19.如圖所示是畢達(dá)哥拉斯(Pythagoras)的生長程序:正方形上連接著等腰直角三角形,等腰直角三角形邊上再連接正方形,如此繼續(xù),若共得到255個(gè)正方形,設(shè)初始正方形的邊長為$\frac{{\sqrt{2}}}{2}$,則最小正方形的邊長為$\frac{1}{16}$.

分析 推導(dǎo)出正方形個(gè)數(shù){an}是以首項(xiàng)為1,公比為2的等比數(shù)列,從而得到正方形個(gè)數(shù)為8,再推導(dǎo)出第一個(gè)正方形的邊長{bn}是以$\frac{{\sqrt{2}}}{2}$為首項(xiàng),公比為$\frac{{\sqrt{2}}}{2}$的等比數(shù)列,由此能求出最小的正方形的邊長.

解答 解:設(shè)初始正方形個(gè)數(shù)為a1=1,依次得到a2=2,a3=4,
每一個(gè)正方形都可以得到2個(gè)正方形,
∴滿足$\frac{{{a_{n+1}}}}{a_n}=2$,是以首項(xiàng)為1,公比為2的等比數(shù)列,
∴正方形個(gè)數(shù)的和為${s_n}=\frac{{1-{2^n}}}{1-2}=255$,解得n=8,
第一個(gè)正方形的邊長設(shè)為${b_1}=\frac{{\sqrt{2}}}{2}$,然后滿足$\frac{{{b_{n+1}}}}{b_n}=\frac{{\sqrt{2}}}{2}$,
∴數(shù)列{bn}是以$\frac{{\sqrt{2}}}{2}$為首項(xiàng),公比為$\frac{{\sqrt{2}}}{2}$的等比數(shù)列,
∴${b_8}={b_1}•{q^{8-1}}=\frac{{\sqrt{2}}}{2}×{({\frac{{\sqrt{2}}}{2}})^7}={({\frac{{\sqrt{2}}}{2}})^8}=\frac{1}{16}$,
∴最小的正方形的邊長為$\frac{1}{16}$.
故答案為:$\frac{1}{16}$.

點(diǎn)評(píng) 本題考查最小正方形的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列、等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在平行四邊形ABCD 中,AC與BD 交于點(diǎn)O,E 是線段 OD的中點(diǎn),AE的延長線與CD 交于點(diǎn)F.若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow$,則$\overrightarrow{AF}$( 。
A.$\frac{3}{4}\overrightarrow{a}$+$\frac{1}{4}\overrightarrow$B.$\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}\overrightarrow$C.$\frac{1}{4}\overrightarrow{a}$+$\frac{3}{4}\overrightarrow$D.$\frac{2}{3}\overrightarrow{a}$+$\frac{1}{3}\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知角α終邊上一點(diǎn)P(-4,3 ),求$\frac{cos(\frac{3π}{2}+α)sin(-5π-α)}{cos(6π-α)sin(\frac{π}{2}+α)tan(-3π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.(3x-2)10的展開式的第5項(xiàng)的系數(shù)是( 。
A.$C_{10}^5$B.$C_{10}^5•{3^5}•{({-2})^5}$C.$C_{10}^4•{3^6}•{({-2})^4}$D.$C_{10}^4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某媒體為了解某地區(qū)大學(xué)生晚上放學(xué)后使用手機(jī)上網(wǎng)情況,隨機(jī)抽取了100名大學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的學(xué)生每晚使用手機(jī)上網(wǎng)平均所用時(shí)間的頻率分布直方圖.將時(shí)間不低于40分鐘的學(xué)生稱為“手機(jī)迷”.
(1)樣本中“手機(jī)迷”有多少人?
非手機(jī)迷手機(jī)迷合計(jì)
301545
451055
合計(jì)7525100
(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否有95%的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?
(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量大學(xué) 生中,采用隨機(jī)抽樣方法每次抽取1名大學(xué)生,抽取3次,經(jīng)調(diào)查一名“手機(jī)迷”比“非手機(jī)迷”每月的話費(fèi)平均多40元,記被抽取的3名大學(xué)生中的“手機(jī)迷”人數(shù)為X,且設(shè)3人每月的總話費(fèi)比“非手機(jī)迷”共多出Y元,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列和Y的期望EY.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)隨機(jī)變量ξ的取值為0,1,2.若P(ξ=0)=$\frac{1}{5}$,E(ξ)=1,則D(ξ)=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=ln(|3x-1|-1)的定義域是( 。
A.(-∞,0)B.$(\frac{2}{3},+∞)$C.$(-∞,0)∪(\frac{2}{3},+∞)$D.$(0,\frac{2}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在三棱錐S-ABC中,AC⊥BC,AC=3,BC=4,SA=SB=$\sqrt{13}$,平面SAB⊥平面ABC,則二面角S-BC-A的大小為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知sin(π-θ)-cos($\frac{π}{2}$+θ)=2$\sqrt{3}$cos(2π-θ),則sinθcosθ-cos2θ=(  )
A.$\frac{1-\sqrt{3}}{4}$B.$\frac{\sqrt{3}-1}{4}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案