分析 根據分段函數單調性的性質建立不等式關系進行求解即可.
解答 解:∵函數f(x)=$\left\{\begin{array}{l}(a-2)x,x≥1\\{(\frac{1}{2})^x}-1,x<1\end{array}$是R上的單調遞減函數,
∴$\left\{\begin{array}{l}{a-2<0}\\{\frac{1}{2}-1≥a-2}\end{array}\right.$,即$\left\{\begin{array}{l}{a<2}\\{a≤\frac{3}{2}}\end{array}\right.$,
得a≤$\frac{3}{2}$,
即實數a的取值范圍是a≤$\frac{3}{2}$,
故答案為:a≤$\frac{3}{2}$
點評 本題主要考查函數單調性的應用,根據分段函數單調性的性質建立不等式關系是解決本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {1} | B. | {-1,0} | C. | {-1,0,1} | D. | ∅ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com