18.在區(qū)間(0,1)內(nèi)任取兩個數(shù),則這兩個數(shù)的和小于$\frac{6}{5}$的概率為(  )
A.$\frac{18}{25}$B.$\frac{17}{25}$C.$\frac{16}{25}$D.$\frac{12}{25}$

分析 設(shè)取出的兩個數(shù)分別為x、y,可得滿足“x、y∈(0,1)”的區(qū)域為橫縱坐標都在(0,1)之間的正方形內(nèi)部,而事件“兩數(shù)之和小于$\frac{6}{5}$”對應(yīng)的區(qū)域為正方形的內(nèi)部且在直線x+y=$\frac{6}{5}$下方的部分,根據(jù)題中數(shù)據(jù)分別計算兩部分的面積,由幾何概型的計算公式可得答案.

解答 解:設(shè)取出的兩個數(shù)分別為x、y,可得0<x<1且0<y<1,
滿足條件的點(x,y)所在的區(qū)域為橫縱坐標都在(0,1)之間的
正方形內(nèi)部,即如圖的正方形OABC的內(nèi)部,其面積為S=1×1=1,
若兩數(shù)之和小于$\frac{6}{5}$,即x+y<$\frac{6}{5}$,對應(yīng)的區(qū)域為直線x+y=$\frac{6}{5}$下方,
且在正方形OABC內(nèi)部,即如圖的陰影部分.
∵直線x+y=$\frac{6}{5}$分別交BC、AB于點D($\frac{1}{5}$,1)、E(1,$\frac{1}{5}$),
∴S△BDE=$\frac{1}{2}×\frac{4}{5}×\frac{4}{5}$=$\frac{8}{25}$.
因此,陰影部分面積為S'=SABCD-S△BDE=1-$\frac{8}{25}$=$\frac{17}{25}$.
由此可得:兩數(shù)之和小于$\frac{6}{5}$概率為P=$\frac{17}{25}$.
故選:B.

點評 本題給出在區(qū)間(0,1)內(nèi)隨機地取出兩個數(shù),求兩數(shù)之和小于$\frac{6}{5}$的概率.著重考查了二元一次不等式組表示的平面區(qū)域、正方形和三角形的面積公式、幾何概型計算公式等知識點,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=x2-2x+3(x∈(0,3])的值域為[2,6].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.不等式x2+ax+b<0的解集是(2,3),則a+b=( 。
A.-5B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.某市一路公共汽車每天早晨在6:20-6:40內(nèi)任何時刻隨機的發(fā)出第一班車,在6:40-7:00內(nèi)任何時刻隨機的發(fā)出第二班車,在7:00-7:20內(nèi)任何時刻隨機的發(fā)出第三班車,老張每天早晨在6:20-7:20內(nèi)任意時刻都等可能的到一路公共汽車的起點站乘車上班(假設(shè)老張上班只乘坐一路公共汽車),則老張乘一路公共汽車前三班的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在開展研究性學習活動中,班級的學習小組為了解某生活小區(qū)居民用水量y(噸)與氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計并制作了5天該小區(qū)居民用水量與當天氣溫的對應(yīng)表:
日期9月5日10月3日10月8日11月16日12月21日
氣溫x(℃)1815119-3
用水量y(噸)6957454732
(1)若從這隨機統(tǒng)計的5天中任取2天,求這2天中有且只有1天用水量超過50噸的概率(列出所有的基本事件);
(2)由表中數(shù)據(jù)求得線性回歸方程中的$\widehat$≈1.6,試求出$\widehat{a}$的值,并預(yù)測當?shù)貧鉁貫?℃時,該生活小區(qū)的用水量.(參考$\widehat{y}$=$\widehat$x+$\widehat{a}$,公式:$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=x+$\frac{4}{x}$的單調(diào)遞增區(qū)間為(  )
A.(-2,0)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-2,0),(0,2)D.(-∞,-2),(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知拋物線C:y2=8x的焦點為F,準線為l,P是l上一點,Q是直線PF與C的一個交點,若$\overrightarrow{PF}$=-4$\overrightarrow{FQ}$,則|QF|=( 。
A.$\frac{7}{2}$B.3C.$\frac{5}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.從甲、乙、丙三人中任選2名代表,甲被選中的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)已知向量$\vec a$=(sinωx,$\sqrt{3}$cosωx),$\vec b$=(cosωx,cosωx),函數(shù)f(x)=$\vec a$•$\vec b$+m(其中ω>0,m∈R),且f(x)的圖象在y軸右側(cè)的第一個高點的橫坐標為$\frac{π}{12}$.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)如果f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{5π}{12}}$]上的最小值為$\sqrt{3}$,求m的值.

查看答案和解析>>

同步練習冊答案