二面角α—EF—β是直二面角,C∈EF,AC α,BCβ,∠ACF=30°

∠ACB=60°,則∠BCF等于     

 

【答案】

【解析】解:因?yàn)槔枚娼堑亩x和三垂線定理可知得到二面角的平面角以及線線角,然后借助于三角形的特殊性,求解得到∠BCF等于

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知△ABD是等腰直角三角形,∠D=90°,BD=
2
.現(xiàn)將△ABD沿斜邊的中線DC折起,使二面角A-DC-B為直二面角,E是線段AD的中點(diǎn),F(xiàn)是線段AC上的一個(gè)動(dòng)點(diǎn)(不包括A).
(1)確定F的位置,使得平面ABD⊥平面BEF;
(2)當(dāng)直線BD與直線EF所成的角為60°時(shí),求證:平面ABD⊥平面BEF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二面角α-EF-β是直二面角,C∈EF,AC?α,BC?β,∠BCF=45°,∠ACB=60°,則AC與平面β所成的角等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二面角α-EF-β的大小為120°,A是它內(nèi)部的一點(diǎn)AB⊥α,AC⊥β,B,C分別為垂足.
(1)求證:平面ABC⊥β;
(2)當(dāng)AB=4cm,AC=6cm,求BC的長及A到EF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,邊長為2的正方形ABCD中,點(diǎn)E、F分別是邊AB、BC上的點(diǎn),將△AED、△DCF分別沿DE、DF折起,使A、C兩點(diǎn)重合于點(diǎn)A′.
(1)△A′EF恰好是正三角形且Q是A′F的中點(diǎn),求證:EQ⊥平面A′FD
(2)當(dāng)E、F分別是AB、BC的中點(diǎn)時(shí),求二面角A′-EF-D的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案