(本題滿分12分)
求焦點(diǎn)為(-5,0)和(5,0),且一條漸近線為的雙曲線的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知橢圓的離心率為,橢圓短軸長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知?jiǎng)又本與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
(1)求直線被雙曲線截得的弦長(zhǎng);
(2)求過(guò)定點(diǎn)的直線被雙曲線截得的弦中點(diǎn)軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如果兩個(gè)橢圓的離心率相等,那么就稱這兩個(gè)橢圓相似.已知橢圓與橢圓相似,且橢圓的一個(gè)短軸端點(diǎn)是拋物線的焦點(diǎn).
(Ⅰ)試求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓的中心在原點(diǎn),對(duì)稱軸在坐標(biāo)軸上,直線與橢圓交于兩點(diǎn),且與橢圓交于兩點(diǎn).若線段與線段的中點(diǎn)重合,試判斷橢圓與橢圓是否為相似橢圓?并證明你的判斷.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分)
設(shè)點(diǎn)P是圓x2 +y2 =4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且.
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過(guò)曲線C與x軸正半軸的交點(diǎn)Q,求證:直線過(guò)定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知橢圓的焦點(diǎn)坐標(biāo)為,,且短軸一頂點(diǎn)B滿足,
(Ⅰ) 求橢圓的方程;
(Ⅱ)過(guò)的直線l與橢圓交于不同的兩點(diǎn)M、N,則△MN的內(nèi)切圓的面積是否存在最大值?若存在求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知橢圓,其左準(zhǔn)線為,右準(zhǔn)線為,拋物線以坐標(biāo)原點(diǎn)為頂點(diǎn),為準(zhǔn)線,交于兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)求線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分) 如圖,是離心率為的橢圓,
:()的左、右焦點(diǎn),直線:將線段分成兩段,其長(zhǎng)度之比為1 : 3.設(shè)是上的兩個(gè)動(dòng)點(diǎn),線段的中點(diǎn)在直線上,線段的中垂線與交于兩點(diǎn).
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn),使以為直徑的圓經(jīng)過(guò)點(diǎn),若存在,求出點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分別是橢圓:+=1()的左、右焦點(diǎn),是橢圓的上頂點(diǎn),是直線與橢圓的另一個(gè)交點(diǎn),=60°.
(1)求橢圓的離心率;
(2)已知△的面積為40,求a, b 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com