(本題滿分12分)
求焦點(diǎn)為(-5,0)和(5,0),且一條漸近線為的雙曲線的方程.

解析試題分析:設(shè)雙曲線的方程為,………………2分
其漸近線為,………………………………………………….4分
現(xiàn)已知雙曲線的一條漸近線為,得,…….6分
又雙曲線中,……………………………………………8分
解得,……………………………………………………………..10分
∴雙曲線的方程為……………………………..12分
考點(diǎn):雙曲線方程及性質(zhì)
點(diǎn)評(píng):焦點(diǎn)在x軸時(shí)漸近線為,焦點(diǎn)在y軸時(shí)漸近線為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
已知橢圓的離心率為,橢圓短軸長(zhǎng)為
(Ⅰ)求橢圓的方程;
(Ⅱ)已知?jiǎng)又本與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
(1)求直線被雙曲線截得的弦長(zhǎng);
(2)求過(guò)定點(diǎn)的直線被雙曲線截得的弦中點(diǎn)軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如果兩個(gè)橢圓的離心率相等,那么就稱這兩個(gè)橢圓相似.已知橢圓與橢圓相似,且橢圓的一個(gè)短軸端點(diǎn)是拋物線的焦點(diǎn).
(Ⅰ)試求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓的中心在原點(diǎn),對(duì)稱軸在坐標(biāo)軸上,直線與橢圓交于兩點(diǎn),且與橢圓交于兩點(diǎn).若線段與線段的中點(diǎn)重合,試判斷橢圓與橢圓是否為相似橢圓?并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)
設(shè)點(diǎn)P是圓x2 +y2 =4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過(guò)曲線C與x軸正半軸的交點(diǎn)Q,求證:直線過(guò)定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知橢圓的焦點(diǎn)坐標(biāo)為,且短軸一頂點(diǎn)B滿足
(Ⅰ) 求橢圓的方程;
(Ⅱ)過(guò)的直線l與橢圓交于不同的兩點(diǎn)M、N,則△MN的內(nèi)切圓的面積是否存在最大值?若存在求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知橢圓,其左準(zhǔn)線為,右準(zhǔn)線為,拋物線以坐標(biāo)原點(diǎn)為頂點(diǎn),為準(zhǔn)線,兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)求線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分) 如圖,是離心率為的橢圓,
()的左、右焦點(diǎn),直線將線段分成兩段,其長(zhǎng)度之比為1 : 3.設(shè)上的兩個(gè)動(dòng)點(diǎn),線段的中點(diǎn)在直線上,線段的中垂線與交于兩點(diǎn).

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn),使以為直徑的圓經(jīng)過(guò)點(diǎn),若存在,求出點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

分別是橢圓+=1()的左、右焦點(diǎn),是橢圓的上頂點(diǎn),是直線與橢圓的另一個(gè)交點(diǎn),=60°.
(1)求橢圓的離心率;
(2)已知△的面積為40,求a, b 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案