A. | [-e5,-5]∪[5,e5] | B. | [-5,0)∪(0,5] | C. | [-e2,-2]∪[2,e2] | D. | [-2,0]∪(0,2] |
分析 求出集合M,令g(x)=$\frac{f(x)}{{x}^{2}}$,求出g(x)的單調(diào)性,由$\frac{f(x)}{{x}^{2}}$≤2=$\frac{f(5)}{{5}^{2}}$,得|x|>5,結(jié)合x∈M,求出不等式的解集即可.
解答 解:由xf′(x)<2f(x),得:xf′(x)-2f(x)<0,
由ln|x|≤5,解得:-e5≤x≤e5,
令g(x)=$\frac{f(x)}{{x}^{2}}$,故g(x)的定義域是[-e5,0)∪(0,e5],
則g′(x)=$\frac{f′(x{)x}^{2}-2xf(x)}{{x}^{4}}$=$\frac{xf′(x)-2f(x)}{{x}^{3}}$<0,
∴x>0時,g(x)在定義域遞減,又f(x)是偶函數(shù),
∴x<0時,f(x)在定義域遞增,
∴由$\frac{f(x)}{{x}^{2}}$≤2=$\frac{f(5)}{{5}^{2}}$,得:|x|>5,解得:x>5或x<-5,
∴不等式的解集是:[-e5,-5]∪[5,e5],
故選:A.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應(yīng)用,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com