【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E為DD1的中點(diǎn).求證:

(1)BD1∥平面EAC;
(2)平面EAC⊥平面AB1C.

【答案】
(1)證明:連接BD,交AC于O.連接EO,BD1

因?yàn)镋為DD1的中點(diǎn),所以BD1∥OE.)

又OE平面EAC,BD1平面EAC,

所以BD1∥平面EAC


(2)證明:∵BB1⊥AC,BD⊥AC.BB1∩BD=B,BB1、BD在面BB1D1D 內(nèi)

∴AC⊥平面BB1D1D

又BD1平面BB1D1D∴BD1⊥AC.

同理BD1⊥AB1,∴BD1⊥平面AB1C.

由(1)得BD1∥OE,∴EO⊥平面AB1C.

又EO平面EAC,∴平面EAC⊥平面AB1C


【解析】(1)連接BD,交AC于O.連接EO,BD1 . 根據(jù)中位線可知BD1∥OE,又OE平面EAC,BD1平面EAC,根據(jù)線面平行的判定定理可知BD1∥平面EAC;(2)根據(jù)BB1⊥AC,BD⊥AC,BB1∩BD=B,滿足線面垂直的判定定理,則AC⊥平面BB1D1D,又BD1平面BB1D1D則BD1⊥AC,同理BD1⊥AB1 , 從而BD1⊥平面AB1C.根據(jù)(1)可得BD1∥OE,從而EO⊥平面AB1C,又EO平面EAC,根據(jù)面面垂直的判定定理可知平面EAC⊥平面AB1C.
【考點(diǎn)精析】掌握直線與平面平行的判定和平面與平面垂直的性質(zhì)是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解籃球愛好者小張的投籃命中率與打籃球時(shí)間之間的關(guān)系,下表記錄了小張某月1號(hào)到5號(hào)每天打籃球時(shí)間(單位:小時(shí))與當(dāng)天投籃命中率之間的關(guān)系:

時(shí)間

1

2

3

4

5

命中率

0.4

0.5

0.6

0.6

0.4


(1)求小張這天的平均投籃命中率;

(2)利用所給數(shù)據(jù)求小張每天打籃球時(shí)間(單位:小時(shí))與當(dāng)天投籃命中率之間的線性回歸方程;(參考公式:

(3)用線性回歸分析的方法,預(yù)測小李該月號(hào)打小時(shí)籃球的投籃命中率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在以AB為直徑的圓O上,PA垂直于圓O所在的平面,G為△AOC的重心.
(1)求證:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A﹣OP﹣G的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,左右焦點(diǎn)分別為F1 , F2 , 以橢圓短軸為直徑的圓與直線 相切.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過點(diǎn)F1、斜率為k1的直線l1與橢圓E交于A,B兩點(diǎn),過點(diǎn)F2、斜率為k2的直線l2與橢圓E交于C,D兩點(diǎn),且直線l1 , l2相交于點(diǎn)P,若直線OA,OB,OC,OD的斜率kOA , kOB , kOC , kOD滿足kOA+kOB=kOC+kOD , 求證:動(dòng)點(diǎn)P在定橢圓上,并求出此橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三點(diǎn)A(1,﹣1),B(3,0),C(2,1),P為平面ABC上的一點(diǎn), ,且 =0, =3.
(1)求 ;
(2)求λ+μ 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列題目的證法,再解決后面的問題.

已知a1,a2∈R,且a1+a2=1,求證:a+a.

證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2,則f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.

因?yàn)閷σ磺衳∈R,恒有f(x)≥0,

所以Δ=4-8(a+a)≤0,從而得a+a.

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請由上述結(jié)論寫出關(guān)于a1,a2,…,an的推廣式;

(2)參考上述證法,請對你推廣的結(jié)論加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的公差d>0,且a1a6=11,a3+a4=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{ }的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為調(diào)查來自南方和北方的同齡大學(xué)生的身高差異,從2016級(jí)的年齡在18~19歲之間的大學(xué)生中隨機(jī)抽取了來自南方和北方的大學(xué)生各10名,測量他們的身高,量出的身高如下(單位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根據(jù)抽測結(jié)果,畫出莖葉圖,對來自南方和北方的大學(xué)生的身高作比較,寫出統(tǒng)計(jì)結(jié)論.

(2)設(shè)抽測的10名南方大學(xué)生的平均身高為x cm,將10名南方大學(xué)生的身高依次輸入如圖所示的程序框圖進(jìn)行運(yùn)算,問輸出的s大小為多少?并說明s的統(tǒng)計(jì)學(xué)意義.

(3)為進(jìn)一步調(diào)查身高與生活習(xí)慣的關(guān)系,現(xiàn)從來自南方的這10名大學(xué)生中隨機(jī)抽取2名身高不低于170 cm的學(xué)生,求身高為176 cm的學(xué)生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冶煉某種金屬可以用舊設(shè)備和改造后的新設(shè)備,為了檢驗(yàn)用這兩種設(shè)備生產(chǎn)的產(chǎn)品中所含雜質(zhì)的關(guān)系,調(diào)查結(jié)果如下表所示:

分類

雜質(zhì)高

雜質(zhì)低

舊設(shè)備

37

121

新設(shè)備

22

202

根據(jù)以上數(shù)據(jù),則(  )

A. 含雜質(zhì)的高低與設(shè)備改造有關(guān)

B. 含雜質(zhì)的高低與設(shè)備改造無關(guān)

C. 設(shè)備是否改造決定含雜質(zhì)的高低

D. 以上答案都不對

查看答案和解析>>

同步練習(xí)冊答案