【題目】四棱錐P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,過點(diǎn)B作直線l∥PD,Q為直線l上一動(dòng)點(diǎn).
(1)求證:QP⊥AC;
(2)當(dāng)二面角Q﹣AC﹣P的大小為120°時(shí),求QB的長(zhǎng);
(3)在(2)的條件下,求三棱錐Q﹣ACP的體積.

【答案】
(1)證明:設(shè)AC∩BD=O,

∵底面ABCD是菱形,∴AC⊥BD,

∵PD⊥平ABCD,AC平面ABCD,

∴PD⊥AC,又PD平面PBD,BD平面PBD,PD∩BD=D,

∴AC⊥平面PBD,

∵BQ∥PD,∴Q∈平面PBD,

∴PQ平面PBD,

∴AC⊥PQ.


(2)解:連結(jié)OP,OQ,

∵△ACD是邊長(zhǎng)為2的等邊三角形,

∴OD=OB= ,∴tan∠POD= ,

∴∠POD小于60°,

∴Q點(diǎn)位于B點(diǎn)上方,

由(1)知AC⊥平面PDBQ,

∴AC⊥OP,AC⊥OQ,

∴∠POQ為二面角P﹣AC﹣D的平面角,

在Rt△POD中, ,設(shè)QB=x,則Rt△OBQ中, ,

在直角梯形PDBQ中, ,

在△POQ中,由余弦定理得 ,故6﹣4x>0且3x2﹣16x+5=0,

解得 ,即


(3)解:由(2)知: ,

∵AC⊥面POQ,


【解析】(1)由AC⊥BD,AC⊥PD可得AC⊥平面PBD,故而AC⊥PQ;(2)計(jì)算∠POD的大小判斷Q點(diǎn)大體位置,設(shè)BQ=x,計(jì)算三角形POQ的邊長(zhǎng),利用余弦定理解出x;(3)代入公式V= 計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x+φ),|φ|≤ ,若f( ﹣x)=﹣f(x),則要得到y(tǒng)=sin2x的圖象只需將y=f(x)的圖象(
A.向左平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0),橢圓C的右焦點(diǎn)F的坐標(biāo)為 ,短軸長(zhǎng)為2.
(I)求橢圓C的方程;
(II)若點(diǎn)P為直線x=4上的一個(gè)動(dòng)點(diǎn),A,B為橢圓的左、右頂點(diǎn),直線AP,BP分別與橢圓C的另一個(gè)交點(diǎn)分別為M,N,求證:直線MN恒過點(diǎn)E(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是首項(xiàng) ,公比 的等比數(shù)列.設(shè) (n∈N*). (Ⅰ)求證:數(shù)列{bn}為等差數(shù)列;
(Ⅱ)設(shè)cn=an+b2n , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四面體ABCD中,E、F分別是棱BC和AD的中點(diǎn),則直線AE和CF所成的角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+4|﹣|x﹣1|.
(1)解不等式f(x)>3;
(2)若不等式f(x)+1≤4a﹣5×2a有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如下表所示),規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失敗.

晉級(jí)成功

晉級(jí)失敗

合計(jì)

16

50

合計(jì)

(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?
(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級(jí)失敗的人數(shù)為X,求X的分布列與數(shù)學(xué)期望E(X).
(參考公式: ,其中n=a+b+c+d)

P(K2≥k0

0.40

0.25

0.15

0.10

0.05

0.025

k0

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且f(﹣x)=f(x),則(
A.f(x)在(0, )單調(diào)遞增
B.f(x)在( , )單調(diào)遞減
C.f(x)在( , )單調(diào)遞增
D.f(x)在( ,π)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ )+cos(2x+ )+sin2x
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若f( )= ,a=2,b= ,求c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案