15.已知函數(shù)f(x)=(sinx+cosx)2+2cos2x.
(1)把函數(shù)化為f(x)=Asin(ωx+ϕ)+b的形式,然后寫出最小正周期、振幅、初相;
(2)求f(x)的遞減區(qū)間.

分析 (1)利用二倍角公式、輔助角公式,化簡函數(shù),然后寫出最小正周期、振幅、初相;
(2)結合正弦函數(shù)的單調性,即可得出結論.

解答 解:(1)函數(shù)f(x)=(sinx+cosx)2+2cos2x=1+sin2x+1+cos2x=2+$\sqrt{2}$sin(2x+$\frac{π}{4}$),
f(x)的最小正周期π、振幅$\sqrt{2}$、初相$\frac{π}{4}$;
(2)令2x+$\frac{π}{4}$∈[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ],即x∈[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$](k∈Z),
∴可得函數(shù)的遞減區(qū)間為[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$](k∈Z).

點評 本題考查函數(shù)的單調性,考查三角函數(shù)的化簡,正確化簡函數(shù)是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知二次函數(shù)f(x)=ax2-(2a-1)x-lnx(a為常數(shù),a≠1).
(Ⅰ)當a<0時,求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(Ⅱ)記函數(shù)y=f(x)圖象為曲線C,設點A(x1,y1),B(x2,y2)是曲線C上不同的兩點,點M為線段AB的中點,過點M作x軸的垂線交曲線C于點N.判斷曲線C在點N處的切線是否平行于直線AB?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.當雙曲線M:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{2m+6}$=1(-2≤m<0)的焦距取得最小值時,雙曲線M的漸近線方程為( 。
A.y=±$\sqrt{2}$xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±2xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.雙曲線$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{k}$=1的實軸長為8,離心率e∈(1,2),則k的取值范圍是( 。
A.(-∞,0)B.(-48,0)C.(-192,0)D.(-60,-48)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.若x是方程${2^x}-\frac{3}{{{2^{x-1}}}}=5$的解,化簡:|x-3|+x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=a•2x+b的圖象過點$A({1,\frac{3}{2}})$,$B({2,\frac{5}{2}})$.
(1)求函數(shù)y=f(x)的反函數(shù)y=f-1(x)的解析式;
(2)若$F(x)={f^{-1}}({{2^{x-1}}})-{log_{\frac{1}{2}}}f(x)$,求使得F(x)≤0的x取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)$y={({\frac{1}{3}})^{|x|}}$的單調遞增區(qū)間是(-∞,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.不等式$\frac{x+2}{x-1}$≤0的解集為(  )
A.{x|-2<x<1}B.{x|-2≤x<1}C.{x|-2≤x≤1}D.{x|-2<x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合M={0,2},則M的真子集的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案