【題目】已知半徑為的圓的圓心在軸上,圓心的橫坐標是整數(shù),且與直線相切.

(Ⅰ)求圓的方程;

(Ⅱ)設(shè)直線 與圓相交于兩點,求實數(shù)的取值范圍;

(Ⅲ) 在(Ⅱ)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由

【答案】(Ⅰ)(Ⅱ)(Ⅲ)存在實數(shù)

【解析】試題分析:

()設(shè)出圓心坐標,利用點到直線的距離等于半徑可得,則圓的方程為

()由題意得到關(guān)于實數(shù)a的不等式,求解不等式可得實數(shù)a的取值范圍是;

()由題意討論可得存在實數(shù)滿足題意.

試題解析:

(Ⅰ)設(shè)圓心為).由于圓與直線相切,且半徑為,所以 ,即.因為為整數(shù),故

故所求圓的方程為

(Ⅱ), 則,又

(Ⅲ)設(shè)符合條件的實數(shù)存在,由于,則直線的斜率為

的方程為,即

由于垂直平分弦AB,故圓心必在上,

所以,解得。由于,故存在實數(shù)

使得過點的直線垂直平分弦AB

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

(Ⅱ)當時,方程恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;

(Ⅲ)將函數(shù)的圖象向右平移)個單位后所得函數(shù)的圖象關(guān)于原點中心對稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校一個校園景觀的主題為“托起明天的太陽”,其主體是一個半徑為5米的球體,需設(shè)計一個透明的支撐物將其托起,該支撐物為等邊圓柱形的側(cè)面,厚度忽略不計.軸截面如圖所示,設(shè).(注:底面直徑和高相等的圓柱叫做等邊圓柱.)

(1)用表示圓柱的高;

(2)實踐表明,當球心和圓柱底面圓周上的點的距離達到最大時,景觀的觀賞效

果最佳,求此時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓M恒過點(0,1),且與直線y=﹣1相切.
(1)求圓心M的軌跡方程;
(2)動直線l過點P(0,﹣2),且與點M的軌跡交于A、B兩點,點C與點B關(guān)于y軸對稱,求證:直線AC恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì):該函數(shù)在上是減函數(shù),在上是增函數(shù).

1)已知,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;

2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關(guān)系式:y= +10(x﹣6)2 , 其中3<x<6,a為常數(shù),已知銷售的價格為5元/千克時,每日可以售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究一種昆蟲的產(chǎn)卵數(shù)y和溫度x是否有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)列于下表中,并做出了散點圖,發(fā)現(xiàn)樣本點并沒有分布在某個帶狀區(qū)域內(nèi),兩個變量并不呈現(xiàn)線性相關(guān)關(guān)系,現(xiàn)分別用模型① 與模型;② 作為產(chǎn)卵數(shù)y和溫度x的回歸方程來建立兩個變量之間的關(guān)系.

溫度x/°C

20

22

24

26

28

30

32

產(chǎn)卵數(shù)y/個

6

10

21

24

64

113

322

t=x2

400

484

576

676

784

900

1024

z=lny

1.79

2.30

3.04

3.18

4.16

4.73

5.77

26

692

80

3.57

1157.54

0.43

0.32

0.00012

其中 ,zi=lnyi ,
附:對于一組數(shù)據(jù)(μ1 , ν1),(μ2 , ν2),…(μn , νn),其回歸直線v=βμ+α的斜率和截距的最小二乘估計分別為: ,
(1)根據(jù)表中數(shù)據(jù),分別建立兩個模型下y關(guān)于x的回歸方程;并在兩個模型下分別估計溫度為30°C時的產(chǎn)卵數(shù).(C1 , C2 , C3 , C4與估計值均精確到小數(shù)點后兩位)(參考數(shù)據(jù):e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相關(guān)指數(shù)計算分別為 .,請根據(jù)相關(guān)指數(shù)判斷哪個模型的擬合效果更好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等比數(shù)列,a1=2,且a1 , a3+1,a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2an , 求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案