求函數(shù)f(x)=sinx+cosx+sinxcosx.x∈(0,
π
3
)的最大值并求出相應(yīng)的x值.
考點(diǎn):三角函數(shù)的最值
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:設(shè)t=sinx+cosx=
2
sin(x+
π
4
),由 x∈(0,
π
3
),可得(x+
π
4
)
(
π
4
,
12
)
t∈(1,
2
]
,sinxcosx=
t2-1
2
.于是函數(shù)f(x)=
1
2
t2+t-
1
2
,再利用二次函數(shù)的單調(diào)性即可得出.
解答: 解:設(shè)t=sinx+cosx=
2
sin(x+
π
4
),
∵x∈(0,
π
3
),
(x+
π
4
)
(
π
4
,
12
)
,t∈(1,
2
]
,則sinxcosx=
t2-1
2

∴函數(shù)f(x)=sinx+cosx+sinxcosx=
1
2
t2+t-
1
2
=
1
2
(t+1)2-1
,
∴函數(shù)f(x)在(1,
2
)單調(diào)遞增,
∴當(dāng)t=
2
,即sin(
π
4
+x)=1時,
函數(shù)f(x)有最大值
2
-
1
2
.     
此時,x=
π
4
點(diǎn)評:本題考查了三角函數(shù)的同角基本關(guān)系式、兩角和差的正弦公式、正弦函數(shù)的單調(diào)性,考查了換元法,考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
x
+lnx(a∈R).
(Ⅰ)若x=1是f(x)的一個極值點(diǎn),求a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若f(x)<x2在x∈(1,+∞)時恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx+1,集合A={x|
π
6
≤x≤
6
},B={f(x)|x∈A}
(1)求A∩B;
(2)求函數(shù)y=f(2x-
π
3
)(x∈A)的最小值及對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+mx+4,g(x)=x2+2x-2m.
(1)若方程f(x)=0與g(x)=0至少有一個有實(shí)根,求實(shí)數(shù)m的范圍;
(2)若方程g(x)=0在區(qū)間(-∞,-2)與(-2,1)各有一個實(shí)根,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-4≤x<8},函數(shù)f(x)=lg(x-5)的定義域構(gòu)成集合B,求 
(1)A∩B,
(2)(∁RA)∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+ln(x+1).
(1)求證:當(dāng)x∈(0,+∞)時f(x)>x恒成立;
(2)求證:
1
22
+
2
32
+…+
2013
20142
<ln2015;
(3)求證:
n
i=1
(sin
i-1
n
+
n
i+n
)
<n(1-cos1+ln2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某公園摩天輪的半徑為40m,點(diǎn)O距地面的高度為50m,摩天輪做勻速轉(zhuǎn)動,每3min轉(zhuǎn)一圈,摩天輪上的點(diǎn)P的起始位置在最低點(diǎn)處.
(Ⅰ)已知在時刻t(min)時點(diǎn)P距離地面的高度f(t)=Asin(ωt+φ)+h,求2006min時點(diǎn)P距離地面的高度;
(Ⅱ)當(dāng)離地面50+20
3
m以上時,可以看到公園的全貌,求轉(zhuǎn)一圈中有多少時間可以看到公園全貌?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-|x|+1,若關(guān)于x的方程f2(x)+(2m-1)f(x)+4-2m=0有4個不同的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=f(x)(x∈R)既是偶函數(shù),又是奇函數(shù),則f(2013)=
 

查看答案和解析>>

同步練習(xí)冊答案