【題目】在△ABC中,A、B、C的對邊分別是a,b,c,且bcosB是acosC,ccosA的等差中項(xiàng),則角B= .
【答案】
【解析】解:∵bcosB是acosC,ccosA的等差中項(xiàng), ∴2bcosB=acosC+ccosA,
由正弦定理可得2sinBcosB=sinAcosC+sinCcosA,
即2sinBcosB=sin(A+C)=sinB,
又∵sinB>0,上式兩邊同除以sinB可得cosB= ,
∵0<B<π,∴B=
所以答案是: .
【考點(diǎn)精析】本題主要考查了等差數(shù)列的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為,短軸長為,直線與橢圓交于、兩點(diǎn).
(1)求橢圓的方程;
(2)若直線與圓相切,探究是否為定值,如果是定值,請求出該定值;如果不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin(ωx+φ)( )的最小正周期是π,若其圖象向右平移 個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象( )
A.關(guān)于點(diǎn) 對稱
B.關(guān)于點(diǎn) 對稱
C.關(guān)于直線 對稱
D.關(guān)于直線 對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)公司針對企業(yè)職工推出一款意外險(xiǎn)產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬元.保險(xiǎn)公司把職工從事的所有崗位共分為、、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的每賠付頻率如下表(并以此估計(jì)賠付概率).
(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費(fèi)的20%,試分別確定各類工種每張保單保費(fèi)的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險(xiǎn),并以(Ⅰ)中計(jì)算的各類保險(xiǎn)上限購買,試估計(jì)保險(xiǎn)公司在這宗交易中的期望利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此時(shí)的x值
(2)求f(x)的單調(diào)減區(qū)間
(3)若x∈[﹣ , ]時(shí),求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)證明:當(dāng)時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓和圓.
(1)判斷圓和圓的位置關(guān)系;
(2)過圓的圓心作圓的切線,求切線的方程;
(3)過圓的圓心作動(dòng)直線交圓于A,B兩點(diǎn).試問:在以AB為直徑的所有圓中,是否存在這樣的圓,使得圓經(jīng)過點(diǎn)?若存在,求出圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)來臨,有農(nóng)民工兄弟、、、四人各自通過互聯(lián)網(wǎng)訂購回家過年的火車票,若訂票成功即可獲得火車票,即他們獲得火車票與否互不影響.若、、、獲得火車票的概率分別是,其中,又成等比數(shù)列,且、兩人恰好有一人獲得火車票的概率是.
(1)求的值;
(2)若、是一家人且兩人都獲得火車票才一起回家,否則兩人都不回家.設(shè)表示、、、能夠回家過年的人數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c. (Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,且c=2a,求cosB的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com