正四棱錐P-ABCD的側(cè)棱長和底面邊長都等于a,有兩個正四面體的棱長也都等于a.當這兩個正四面體各有一個面與正四棱錐的側(cè)面PAD,側(cè)面PBC完全重合時,得到一個新的多面體,該多面體是( 。
分析:由正四棱錐的相鄰二個側(cè)面所成的二面角為arccos(-
1
3
),可知得到的新多面體為五面體.
解答:解:正四面體每相鄰二個面所成的二面角為arccos
1
3
,
題目所說的正四棱錐的相鄰二個側(cè)面所成的二面角為arccos(-
1
3
),
所以得到的新多面體為五面體.
故選A.
點評:本題考查棱錐的結(jié)構(gòu)特征,解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知正四棱錐P-ABCD的高為4,側(cè)棱與底面所成的角為60°,則該正四棱錐的側(cè)面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正四棱錐P-ABCD底面的四個頂點A、B、C、D在球O的同一個大圓上,點P在球面上,如果VP-ABCD=
16
3
,則求O的表面積為( 。
A、4πB、8π
C、12πD、16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用斜二測畫法畫一個底面邊長為4cm,高為3cm 的正四棱錐P-ABCD的直觀圖,點P在底面的投影是正方形的中心O,計算它的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•溫州一模)如圖是正四棱錐P-ABCD的三視圖,其中正視圖是邊長為1的正三角形,則這個四棱錐的表面積是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正四棱錐P-ABCD的側(cè)棱和底面邊長都等于2
2
,則它的外接球的表面積是( 。

查看答案和解析>>

同步練習冊答案