【題目】某上市公司股票在30天內(nèi)每股的交易價(jià)格P(元)關(guān)于時(shí)間t(天)的函數(shù)關(guān)系為,該股票在30天內(nèi)的日交易量Q(萬股)關(guān)于時(shí)間t(天)的函數(shù)為一次函數(shù),其圖象過點(diǎn)和點(diǎn).
(1)求出日交易量Q(萬股)與時(shí)間t(天)的一次函數(shù)關(guān)系式;
(2)用y(萬元)表示該股票日交易額,寫出y關(guān)于t的函數(shù)關(guān)系式,并求在這30天內(nèi)第幾天日交易額最大,最大值為多少?
【答案】(1),,(2)在30天中的第15天,日交易額最大為125萬元.
【解析】
(1)設(shè)出一次函數(shù)解析式,利用待定系數(shù)法求得一次函數(shù)解析式.
(2)求得日交易額的分段函數(shù)解析式,結(jié)合二次函數(shù)的性質(zhì),求得最大值.
(1)設(shè),把所給兩組數(shù)據(jù)代入可求得,.
∴,,
(3)首先日交易額y(萬元)=日交易量Q(萬股)每股交易價(jià)格P(元)
,
∴
當(dāng)時(shí),當(dāng)時(shí),萬元
當(dāng)時(shí),y隨x的增大而減小
故在30天中的第15天,日交易額最大為125萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定直線,定點(diǎn),以坐標(biāo)軸為對稱軸的橢圓過點(diǎn)且與相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)橢圓的弦的中點(diǎn)分別為,若平行于,則斜率之和是否為定值? 若是定值,請求出該定值;若不是定值請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)一個(gè)袋子中裝有4個(gè)大小形狀完全相同的小球,球的編號(hào)分別為1,2,3,4,從袋中有放回的取兩個(gè)球,設(shè)前后兩次取得的球的編號(hào)分別為、,求的概率;
(2)某校早上 開始上課,假設(shè)該校學(xué)生小張與小王在早上7:30~7:50之間到校,且每人在該時(shí)間段內(nèi)到校時(shí)刻是等可能的,求小王比小張至少早5分鐘到校的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到輛/千米時(shí),造成堵塞,此時(shí)車流速度為;當(dāng)車流密度不超過輛/千米時(shí),車流速度為千米/小時(shí),研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績進(jìn)行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績后,
得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績與班級(jí)有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào)。試求抽到9號(hào)或10號(hào)的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·石家莊一模)祖暅?zhǔn)悄媳背瘯r(shí)期的偉大數(shù)學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖去一個(gè)圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺(tái)和半球,則滿足祖暅原理的兩個(gè)幾何體為( )
A. ①② B. ①③
C. ②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱長為1,分別為的中點(diǎn).有下述四個(gè)結(jié)論:①直線與直線垂直;②直線與平面平行;③平面截正方體所得的截面面積為;④直線與直線所成角的正切值為;其中所有正確結(jié)論的編號(hào)是( )
A.②③B.②④C.①③D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行運(yùn)動(dòng)會(huì),其中三級(jí)跳遠(yuǎn)的成績在8.0米 (四舍五入,精確到0.1米) 以上的進(jìn)入決賽,把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30 ,第6小組的頻數(shù)是7 .
(Ⅰ)求進(jìn)入決賽的人數(shù);
(Ⅱ)若從該校學(xué)生(人數(shù)很多)中隨機(jī)抽取兩名,記表示兩人中進(jìn)入決賽的人數(shù),求的分布列及數(shù)學(xué)期望;
(Ⅲ) 經(jīng)過多次測試后發(fā)現(xiàn),甲成績均勻分布在8~10米之間,乙成績均勻分布在9.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠(yuǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線()的焦點(diǎn)F,E上一點(diǎn)到焦點(diǎn)的距離為4.
(1)求拋物線E的方程;
(2)過F作直線l交拋物線E于A,B兩點(diǎn),若直線AB中點(diǎn)的縱坐標(biāo)為,求直線l的方程及弦的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com