【題目】已知函數(shù)f(x)的圖象與函數(shù)y=x3﹣3x2+2的圖象關(guān)于點(diǎn)( ,0)對(duì)稱(chēng),過(guò)點(diǎn)(1,t)僅能作曲線y=f(x)的一條切線,則實(shí)數(shù)t的取值范圍是( )
A.(﹣3,﹣2)
B.[﹣3,﹣2]
C.(﹣∞,﹣3)∪(﹣2,+∞)
D.(﹣∞,﹣3)∪[﹣2,+∞)
【答案】C
【解析】解:函數(shù)f(x)的圖象與函數(shù)y=x3﹣3x2+2的圖象關(guān)于點(diǎn)( ,0)對(duì)稱(chēng), 設(shè)(x,y)為y=f(x)圖象上的點(diǎn),其對(duì)稱(chēng)點(diǎn)為(1﹣x,﹣y),且在函數(shù)y=x3﹣3x2+2的圖象上,
可得﹣y=(1﹣x)3﹣3(1﹣x)2+2,即為y=f(x)=(x﹣1)3+3(1﹣x)2﹣2,
設(shè)切點(diǎn)為(m,n),則n=(m﹣1)3+3(1﹣m)2﹣2,
f(x)的導(dǎo)數(shù)為f′(x)=3(x﹣1)2+6(x﹣1)=3(x2﹣1),
可得切線的方程為y﹣n=3(m2﹣1)(x﹣m),
代入點(diǎn)(1,t),可得t﹣n=3(m2﹣1)(1﹣m),
化簡(jiǎn)可得t+3=3m2﹣2m3 ,
由g(m)=3m2﹣2m3 ,
g′(m)=6m﹣6m2=6m(1﹣m),
當(dāng)0<m<1時(shí),g′(m)>0,g(m)遞增;當(dāng)m<0或m>1時(shí),g′(m)<0,g(m)遞減.
則g(m)在m=0處取得極小值0,在m=1處取得極大值1,
由過(guò)點(diǎn)(1,t)僅能作曲線y=f(x)的一條切線,
可得t+3=3m2﹣2m3只有一解,
則t+3>1或t+3<0,
解得t>﹣2或t<﹣3.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市電視臺(tái)為了解市民對(duì)我市舉辦的春節(jié)文藝晚會(huì)的關(guān)注情況,組織了一次抽樣調(diào)查,下面是調(diào)查中
的其中一個(gè)方面:
按類(lèi)型用分層抽樣的方法抽取份問(wèn)卷,其中屬“看直播”的問(wèn)卷有份.
(1)求的值;
(2)為了解市民為什么不看的一些理由,用分層抽樣的方法從“不看”問(wèn)卷中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中任取份,求至少有份是女性問(wèn)卷的概率;
(3)現(xiàn)從(2)所確定的總體中每次都抽取1份,取后不放回,直到確定出所有女性問(wèn)卷為止,記所要抽取的次數(shù)為,直接寫(xiě)出的所有可能取值(無(wú)需推理).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)有以下說(shuō)法:
①是的極值點(diǎn).
②當(dāng)時(shí), 在上是減函數(shù).
③的圖像與處的切線必相交于另一點(diǎn).
④當(dāng)時(shí), 在上是減函數(shù).
其中說(shuō)法正確的序號(hào)是_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知6只小白鼠有1只被病毒感染,需要通過(guò)對(duì)其化驗(yàn)病毒DNA來(lái)確定是否感染.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定感染為止.方案乙:將6只分為兩組,每組三個(gè),并將它們混合在一起化驗(yàn),若存在病毒DNA,則表明感染在這三只當(dāng)中,然后逐個(gè)化驗(yàn),直到確定感染為止;若結(jié)果不含病毒DNA,則在另外一組中逐個(gè)進(jìn)行化驗(yàn).
(1)求依據(jù)方案乙所需化驗(yàn)恰好為2次的概率.
(2)首次化驗(yàn)化驗(yàn)費(fèi)為10元,第二次化驗(yàn)化驗(yàn)費(fèi)為8元,第三次及其以后每次化驗(yàn)費(fèi)都是6元,列出方案甲所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用方案甲平均需要化驗(yàn)費(fèi)多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓的中心為原點(diǎn),長(zhǎng)軸在軸上,上頂點(diǎn)為,左、右焦點(diǎn)分別為,線段的中點(diǎn)分別為,且是面積為的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過(guò)作直線交橢圓于兩點(diǎn),使,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)如圖,曲線由上半橢圓和部分拋物線 連接而成, 的公共點(diǎn)為,其中的離心率為.
(Ⅰ)求的值;
(Ⅱ)過(guò)點(diǎn)的直線與分別交于(均異于點(diǎn)),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.
(1)已畫(huà)出函數(shù)在軸左側(cè)的圖像,如圖所示,請(qǐng)補(bǔ)出完整函數(shù)的圖像,并根據(jù)圖像寫(xiě)出函數(shù)的增區(qū)間;
⑵寫(xiě)出函數(shù)的解析式和值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù) 的圖象向左平移 個(gè)單位,再向下平移4個(gè)單位,得到函數(shù)g(x)的圖象,則函數(shù)f(x)的圖象與函數(shù)g(x)的圖象( )
A.關(guān)于點(diǎn)(﹣2,0)對(duì)稱(chēng)
B.關(guān)于點(diǎn)(0,﹣2)對(duì)稱(chēng)
C.關(guān)于直線x=﹣2對(duì)稱(chēng)
D.關(guān)于直線x=0對(duì)稱(chēng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓: (其中為圓心)上的每一點(diǎn)橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉?lái)的一半,得到曲線.
(1)求曲線的方程;
(2)若點(diǎn)為曲線上一點(diǎn),過(guò)點(diǎn)作曲線的切線交圓于不同的兩點(diǎn)(其中在的右側(cè)),已知點(diǎn).求四邊形面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com