設(shè),是一個(gè)圓一條直徑的兩個(gè)端點(diǎn),是與垂直的弦,求直線交點(diǎn)的軌跡方程.
以線段所在直線為軸,線段的垂直平分線為軸,建立平面直角坐標(biāo)系如圖,設(shè)圓的半徑為,則,的坐標(biāo)分別為,,圓方程為,設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,于是直線的方程為.           ①
直線的方程為.                                ②
②得

,

為所求的軌跡方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(本小題共13分)
  如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線AB⊥x軸于點(diǎn)C,,動(dòng)點(diǎn)M到直線AB的距離是它到點(diǎn)D的距離的2倍。
 。↖)求點(diǎn)M的軌跡方程;
 。↖I)設(shè)點(diǎn)K為點(diǎn)M的軌跡與x軸正半軸的交點(diǎn),直線l交點(diǎn)M的軌跡于E,F(xiàn)兩點(diǎn)(E,F(xiàn)與點(diǎn)K不重合),且滿足,動(dòng)點(diǎn)P滿足,求直線KP的斜率的取值范圍。
  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知常數(shù),在矩形中,,的中點(diǎn).點(diǎn)分別在上移動(dòng),且,的交點(diǎn)(如圖).問(wèn)是否存在兩個(gè)定點(diǎn),使點(diǎn)到這兩點(diǎn)的距離的和為定值?若存在,求出這兩點(diǎn)的坐標(biāo)及此定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn),點(diǎn),在第一象限的動(dòng)點(diǎn)滿足,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線上任一點(diǎn)到的距離減去它到軸的距離的差是,求這曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)拋物線的準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)作直線交拋物線于兩點(diǎn),若線段的垂直平分線交對(duì)稱軸于,求證:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)過(guò)點(diǎn),傾斜角為的直線與拋物線相交于兩點(diǎn),拋物線的頂點(diǎn)在原點(diǎn),以軸為對(duì)稱軸,若成等比數(shù)列,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓過(guò)定點(diǎn)A(1,0),且焦點(diǎn)在x軸上,橢圓與曲線|y|=x的交點(diǎn)為B、C。現(xiàn)有以A為焦點(diǎn),過(guò)點(diǎn)B、C且開(kāi)口向左的拋物線,拋物線的頂點(diǎn)坐標(biāo)為M(m,0)。當(dāng)橢圓的離心率e滿足時(shí),求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(1)原點(diǎn)O及直線為曲線C的焦點(diǎn)和相應(yīng)的準(zhǔn)線;
(2)被直線垂直平分的直線截曲線C所得的弦長(zhǎng)恰好為。
若存在,求出曲線C的方程,若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案