10.|x|•(1-2x)>0的解集為(  )
A.(-∞,0)∪(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$)

分析 由不等式|x|(1-2x)>0可得 x≠0,且1-2x>0,由此求得x的范圍.

解答 解:由不等式|x|(1-2x)>0可得 x≠0,且1-2x>0,求得x<$\frac{1}{2}$,且x≠0,
故選:A

點評 本題主要考查其它不等式的解法,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直線$\sqrt{3}x-y-\sqrt{3}=0$與拋物線y2=4x交于A,B兩點(A在x軸上方),與x軸交于F點,$\overrightarrow{OF}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,則λ-μ=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p1:若sinx≠0,則sinx+$\frac{1}{sinx}$≥2恒成立;p2:x+y=0的充要條件是$\frac{x}{y}$=-1,則下列命題為真命題的是( 。
A.p1∧p2B.p1∨p2C.p1∧(¬p2D.(¬p1)∨p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,且過點$({1,\frac{{\sqrt{3}}}{2}})$.
(1)求E的方程;
(2)若直線l:y=kx+m(k>0)與E相交于P,Q兩點,且OP與OQ(O為坐標(biāo)原點)的斜率之和為2,求O到直線l距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=2xex的一個原函數(shù)為(  )
A.2xex(1+ln2)B.$\frac{{2}^{x}{e}^{x}}{(1+ln2)}$C.2exln2D.$\frac{2{e}^{x}}{ln2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知△ABC中,AB=2$\sqrt{3}$,AC+$\sqrt{3}$BC=6,D為AB的中點,當(dāng)CD取最小值時,△ABC面積為$\frac{3\sqrt{23}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點分別為F1、F2,P為雙曲線右支上一點,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,若$∠P{F_1}{F_2}∈[{\frac{π}{12},\frac{π}{6}}]$,則雙曲線離心率的取值范圍是( 。
A.$[{2,\sqrt{3}+1}]$B.$[{2,2\sqrt{3}+1}]$C.$[{\sqrt{2},2}]$D.$[{\sqrt{2},\sqrt{3}+1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,直線x+2y=a與圓x2+y2=1相交于不同的兩點A(x1,y1),B(x2,y2),O為坐標(biāo)原點,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=a,則實數(shù)a的值為( 。
A.$\frac{5-\sqrt{65}}{4}$B.$\frac{\sqrt{65}-5}{4}$C.$\frac{5-\sqrt{55}}{4}$D.$\frac{\sqrt{55}-5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在棱臺ABC-FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點,$\overrightarrow{AM}=λ\overrightarrow{AF}({λ∈R,λ>0})$.
(Ⅰ)λ為何值時,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的條件下,求直線AN與平面BMN所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案