14.$\frac{1}{3}$[$\frac{1}{2}$(2a+8b)-(4a-2b)]等于(  )
A.2a-bB.2b-aC.b-aD.-( b-a )

分析 去括號(hào),合并同類項(xiàng)化簡即可.

解答 解:原式=$\frac{1}{3}$(a+4b-4a+2b)=$\frac{1}{3}$(-3a+6b)=-a+2b..
故選:B

點(diǎn)評(píng) 本題考查了代數(shù)式的化簡運(yùn)算;屬于基礎(chǔ)題、

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x+1)為偶函數(shù),則函數(shù)y=f(2x)的圖象的對(duì)稱軸是( 。
A.x=1B.x=$\frac{1}{2}$C.x=-$\frac{1}{2}$D.x=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.521化為二進(jìn)制數(shù)是1000001001(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,左焦點(diǎn)為F(-1,0),過點(diǎn)D(0,2)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象與y軸交于點(diǎn)(0,1),它在y軸右側(cè)的得一個(gè)最高點(diǎn)和最低點(diǎn)的坐標(biāo)分別為(x0,2)、(x0+3π,-2).
(1)求f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{3}$(縱坐標(biāo)不變),然后將所得圖象按向右平移$\frac{π}{3}$,得到函數(shù)y=g(x)的圖象,寫出函數(shù)y=g(x)的解析式,并用列表作圖的方法畫出y=g(x)在長度為一個(gè)周期的閉區(qū)間上的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)在區(qū)間[a,b]上為單調(diào)函數(shù),且圖象是連續(xù)不斷的曲線,則下列說法中正確的是( 。
A.函數(shù)f(x)在區(qū)間[a,b]上不可能有零點(diǎn)
B.函數(shù)f(x)在區(qū)間[a,b]上一定有零點(diǎn)
C.若函數(shù)f(x)在區(qū)間[a,b]上有零點(diǎn),則必有f(a)•f(b)<0
D.若函數(shù)f(x)在區(qū)間[a,b]上沒有零點(diǎn),則必有f(a)•f(b)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在(x-1)n(n∈N+)的二項(xiàng)展開式中,若只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,則${({2\sqrt{x}-\frac{1}{{\sqrt{x}}}})^n}$的二項(xiàng)展開式中的常數(shù)項(xiàng)為(  )
A.960B.-160C.-560D.-960

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.雙曲線Γ中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,又Γ的實(shí)軸長為4,且一條漸近線為y=2x,求雙曲線Γ的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|(x-6)(x-2a-5)>0},集合B={x|[(a2+2)-x]•(2a-x)<0}.
(1)若a=5,求集合f(x);
(2)已知$a>\frac{1}{2}$.且“x∈A”是“f(x)”的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案