【題目】已知函數(shù).
(1)若函數(shù)是奇函數(shù),求實(shí)數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)求出函數(shù)的解析式,由奇函數(shù)的定義得出,結(jié)合指數(shù)運(yùn)算可求出實(shí)數(shù)的值;
(2)由(1)知,函數(shù)為奇函數(shù)且為減函數(shù),由,得出,可得出關(guān)于的方程在區(qū)間上有解,構(gòu)造函數(shù),將問題轉(zhuǎn)化為二次函數(shù)在區(qū)間上有零點(diǎn),結(jié)合二次函數(shù)零點(diǎn)分布求出實(shí)數(shù)的取值范圍.
(1),函數(shù)的定義域?yàn)?/span>,
由于函數(shù)是奇函數(shù),則,即,
,因此,;
(2)是奇函數(shù),
則方程等價(jià)為
,即,
則,
函數(shù)在定義域上是單調(diào)函數(shù),在區(qū)間上有解,
即在區(qū)間上有解.
構(gòu)造函數(shù),.
①若函數(shù)在區(qū)間有且只有一個(gè)零點(diǎn),
則或,解得或.
當(dāng)時(shí),,令,得,,不合乎題意;
當(dāng)時(shí),,令,得,,不合乎題意;
②若函數(shù)在區(qū)間有兩個(gè)零點(diǎn),則,此時(shí).
綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋擲一藍(lán)、一黃兩枚質(zhì)地均勻的正四面體骰子,分別觀察底面上的數(shù)字.
(1)用表格表示試驗(yàn)的所有可能結(jié)果;
(2)列舉下列事件包含的樣本點(diǎn):A=“兩個(gè)數(shù)字相同”,B=“兩個(gè)數(shù)字之和等于5”,C=“藍(lán)色骰子的數(shù)字為2”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)().
(Ⅰ)當(dāng)時(shí),求不等式的解集;
(Ⅱ)求證:,并求等號(hào)成立的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某顏料公司生產(chǎn)A,B兩種產(chǎn)品,其中生產(chǎn)每噸A產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸B產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸,160噸和200噸,如果A產(chǎn)品的利潤為300元/噸,B產(chǎn)品的利潤為200元/噸,設(shè)公司計(jì)劃一天內(nèi)安排生產(chǎn)A產(chǎn)品x噸,B產(chǎn)品y噸.
(I)用x,y列出滿足條件的數(shù)學(xué)關(guān)系式,并在下面的坐標(biāo)系中畫出相應(yīng)的平面區(qū)域;
(II)該公司每天需生產(chǎn)A,B產(chǎn)品各多少噸可獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a >2.
(I)討論函數(shù)f(x)的單調(diào)性;
(II)若對(duì)于任意的,恒有,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)y=4cos2x-4sinxcosx-1(x∈R).
(1)求出函數(shù)的最小正周期;
(2)求出函數(shù)的最大值及其相對(duì)應(yīng)的x值;
(3)求出函數(shù)的單調(diào)增區(qū)間;
(4)求出函數(shù)的對(duì)稱軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)記,是的導(dǎo)函數(shù),如果是函數(shù)的兩個(gè)零點(diǎn),且滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若某校研究性學(xué)習(xí)小組共6人,計(jì)劃同時(shí)參觀科普展,該科普展共有甲,乙,丙三個(gè)展廳,6人各自隨機(jī)地確定參觀順序,在每個(gè)展廳參觀一小時(shí)后去其他展廳,所有展廳參觀結(jié)束后集合返回,設(shè)事件A為:在參觀的第一小時(shí)時(shí)間內(nèi),甲,乙,丙三個(gè)展廳恰好分別有該小組的2個(gè)人;事件B為:在參觀的第二個(gè)小時(shí)時(shí)間內(nèi),該小組在甲展廳人數(shù)恰好為2人,則( ).
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com