以x軸為對稱軸,原點為頂點的拋物線上的一點P(1,m)到焦點的距離為3,則其方程是
A.y=4x2B.y=8x2      C.y2=4x          D.y2=8x
D

試題分析:根據(jù)題意假設(shè)拋物線的方程為.因為根據(jù)拋物線上的一點到焦點的距離等于到準線的距離,即可得.所以拋物線的方程為.故選D.本小題考查的知識點為拋物線的定義.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖X15-3所示,已知圓C1:x2+(y-1)2=4和拋物線C2:y=x2-1,過坐標原點O的直線與C2相交于點A,B,定點M的坐標為(0,-1),直線MA,MB分別與C1相交于點D,E.

(1)求證:MA⊥MB;
(2)記△MAB,△MDE的面積分別為S1,S2,若=λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為拋物線的焦點,為該拋物線上三點,若,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2=8x的焦點到準線的距離是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線y=-2上有一個動點Q,過點Q作直線l1垂直于x軸,動點P在l1上,且滿足OP⊥OQ(O為坐標原點),記點P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當點(0,2)到直線l2的距離最短時,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線y2=2px(p>0)的焦點在圓x2+y2+2x-3=0上,則p=(  )
A.B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求由拋物線y2=x-1與其在點(2,1),(2,-1)處的切線所圍成的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為拋物線上的動弦,且, 則弦的中點軸的最小距離為
A.2B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線上與焦點的距離等于6的點橫坐標是(   )
A.1 B.2C.3  D.4

查看答案和解析>>

同步練習冊答案