某工廠在試驗階段大量生產(chǎn)一種零件.這種零件有A、B兩項技術(shù)指標(biāo)需要檢測,設(shè)各項技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若A項技術(shù)指標(biāo)達(dá)標(biāo)的概率為,有且僅有一項技術(shù)指標(biāo)達(dá)標(biāo)的概率為.按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品.
(Ⅰ)求一個零件經(jīng)過檢測為合格品的概率;
(Ⅱ)任意依次抽出5個零件進(jìn)行檢測,求其中至多3個零件是合格品的概率;
(Ⅲ)任意依次抽取該種零件4個,設(shè)ξ表示其中合格品的個數(shù),求Eξ與Dξ.
【答案】分析:(1)一個零件經(jīng)過檢測為合格品零件有A、B兩項技術(shù)指標(biāo)需要檢測,設(shè)各項技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響,本題是一個相互獨立事件同時發(fā)生的概率,設(shè)出概率,列出方程,得到結(jié)果.
(2)任意抽出5個零件進(jìn)行檢查,由題意知本題是一個獨立重復(fù)試驗,其中至多3個零件是合格品的對立事件比較簡單,可以從它的對立事件來解題.
(3)由題意知本題滿足二項分布的條件,利用二項分布的期望和方差公式,代入數(shù)據(jù),做出結(jié)果.
解答:解:(Ⅰ)一個零件經(jīng)過檢測為合格品,零件有A、B兩項技術(shù)指標(biāo)需要檢測,
設(shè)各項技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響
∴本題是一個相互獨立事件同時發(fā)生的概率
設(shè)A、B兩項技術(shù)指標(biāo)達(dá)標(biāo)的概率分別為P1、P2
由題意得:,

∴一個零件經(jīng)過檢測為合格品的概率
(Ⅱ)任意抽出5個零件進(jìn)行檢查,本題是一個獨立重復(fù)試驗,
其中至多3個零件是合格品的對立事件比較簡單,
可以從它的對立事件來解題,
∴至多3個零件是合格品的概率為:
(Ⅲ)依題意知ξ~,
,

點評:二項分布要滿足的條件:每次試驗中,事件發(fā)生的概率是相同的,各次試驗中的事件是相互獨立的,每次試驗只要兩種結(jié)果,要么發(fā)生要么不發(fā)生,隨機(jī)變量是這n次獨立重復(fù)試驗中實件發(fā)生的次數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠在試驗階段大量生產(chǎn)一種零件,這種零件有A,B兩項技術(shù)指標(biāo)需要檢測,設(shè)各項技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若A項技術(shù)指標(biāo)達(dá)標(biāo)的概率為
3
4
,有且僅有一項指標(biāo)達(dá)標(biāo)的概率為
5
12
.按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品,則一個零件經(jīng)過檢測為合格品的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠在試驗階段大量生產(chǎn)一種零件.這種零件有A、B兩項技術(shù)指標(biāo)需要檢測,設(shè)各項技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若有且僅有一項技術(shù)指標(biāo)達(dá)標(biāo)的概率為
5
12
,至少一項技術(shù)指標(biāo)達(dá)標(biāo)的概率為
11
12
.按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品.
(1)求一個零件經(jīng)過檢測為合格品的概率是多少?
(2)任意依次抽出5個零件進(jìn)行檢測,求其中至多3個零件是合格品的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠在試驗階段大量生產(chǎn)一種零件,這種零件有A、B兩項技術(shù)指標(biāo)需要檢測,設(shè)各項技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響,若有且僅有一項技術(shù)指標(biāo)達(dá)標(biāo)的概率為
5
12
,至少一項技術(shù)指標(biāo)達(dá)標(biāo)的概率為
11
12
,按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品.
(1)求一個零件經(jīng)守檢測為合格品的概率是多少?
(2)任意依次抽出5個零件進(jìn)行檢測,求其中至多3個零件是合格品的概率是多少?
(3)任意依次抽取該種零件4個,設(shè)ξ表示其中合格品的個數(shù),求Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠在試驗階段大量生產(chǎn)一種零件.這種零件有A,B兩項技術(shù)指標(biāo)需要檢測,設(shè)各項技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若有且僅有一項技術(shù)指標(biāo)達(dá)標(biāo)的概率為
5
12
,至少一項技術(shù)指標(biāo)達(dá)標(biāo)的概率為
11
12
.按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品.
(1)求一個零件經(jīng)過檢測為合格品的概率是多少?
(2)任意依次抽出5個零件進(jìn)行檢測,求其中至多3個零件是合格品的概率是多少?
(3)任意依次抽取該種零件4個,設(shè)ξ表示其中合格品的個數(shù),求Eξ與Dξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州一模)某工廠在試驗階段大量生產(chǎn)一種零件,這種零件有甲、乙兩項技術(shù)指標(biāo)需要檢測,設(shè)各項技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響,按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品,為估計各項技術(shù)的達(dá)標(biāo)概率,現(xiàn)從中抽取1000個零件進(jìn)行檢驗,發(fā)現(xiàn)兩項技術(shù)指標(biāo)都達(dá)標(biāo)的有600個,而甲項技術(shù)指標(biāo)不達(dá)標(biāo)的有250個.
(1)求一個零件經(jīng)過檢測不為合格品的概率及乙項技術(shù)指標(biāo)達(dá)標(biāo)的概率;
(2)任意抽取該零件3個,求至少有一個合格品的概率;
(3)任意抽取該種零件4個,設(shè)ξ表示其中合格品的個數(shù),求隨機(jī)變量ξ的分布列.

查看答案和解析>>

同步練習(xí)冊答案