15分)經(jīng)市場(chǎng)調(diào)查,某超市的一種小商品在過去的近20天內(nèi)的銷售量(件)與價(jià)格(元)均為時(shí)間(天)的函數(shù),且銷售量近似滿足函數(shù)(件),價(jià)格近似滿足函數(shù)
(元)。
(1)試寫出該種商品的日銷售額函數(shù)表達(dá)式;
(2)求該種商品的日銷售額的最大值與最小值。
(1)
(2)
函數(shù)的實(shí)際應(yīng)用題,我們要經(jīng)過析題→建!饽!原四個(gè)過程,在建模時(shí)要注意實(shí)際情況對(duì)自變量x取值范圍的限制,解模時(shí)也要實(shí)際問題實(shí)際考慮.將實(shí)際的最大(。┗瘑栴},利用函數(shù)模型,轉(zhuǎn)化為求函數(shù)的最大(。┦亲顑(yōu)化問題中,最常見的思路之一.
(1)由于銷售量近似滿足函數(shù)(件),價(jià)格近似滿足函數(shù)(元)。則可知該種商品的日銷售額函數(shù)表達(dá)式
(2)判斷函數(shù)的單調(diào)性判斷出函數(shù)的最值,即該商品的日銷售金額y的最值
解:(1)
(2)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列各組函數(shù)中,f(x)與g (x)表示同一函數(shù)的是(   )
A.B.f(x)=x與
C.f(x)=x與D.與g(x)=x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)
為了保護(hù)環(huán)境,某工廠在政府部門的支持下,進(jìn)行技術(shù)改進(jìn): 把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測(cè)算,該處理成本(萬元)與處理量(噸)之間的函數(shù)關(guān)系可近似地表示為: , 且每處理一噸二氧化碳可得價(jià)值為萬元的某種化工產(chǎn)品.
(Ⅰ)當(dāng) 時(shí),判斷該技術(shù)改進(jìn)能否獲利?如果能獲利,求出最大利潤(rùn);如果不能獲利,則國(guó)家至少需要補(bǔ)貼多少萬元,該工廠才不虧損?
(Ⅱ) 當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)的定義域?yàn)镈,若存在非零常數(shù)l使得對(duì)于任意,則稱為M上的l高調(diào)函數(shù).對(duì)于定義域?yàn)镽的奇函數(shù),當(dāng),若為R上的4高調(diào)函數(shù),則實(shí)數(shù)a的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是定義在上的奇函數(shù),且當(dāng)時(shí),,若對(duì)任意的,不等式恒成立,則實(shí)數(shù)的取值范圍為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

集合A 中含有2個(gè)元素,集合A到集合A可構(gòu)成         個(gè)不同的映射.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)為奇函數(shù),則實(shí)數(shù)___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在上的函數(shù)
,則__________  .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的函數(shù)滿足,則的值
A.-1B.-2C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案