18.f(x)=$\left\{\begin{array}{l}{{2}^{-x}}&{x≤1}\\{lo{g}_{9}x}&{x>1}\end{array}\right.$,則f(x)$>\frac{1}{2}$的解集是(-∞,1)∪(1,3).

分析 根據(jù)f(x)的解析式不同,定義域不同,對(duì)應(yīng)求解不等式即可.

解答 解:f(x)=$\left\{\begin{array}{l}{{2}^{-x}}&{x≤1}\\{lo{g}_{9}x}&{x>1}\end{array}\right.$,
當(dāng)x≤1時(shí),f(x)$>\frac{1}{2}$,即${2}^{-x}>\frac{1}{2}$,
解得:x<1.
當(dāng)x>1時(shí),f(x)$>\frac{1}{2}$,即$lo{g}_{9}x>\frac{1}{2}$,
解得:3>x>1.
綜上可得:f(x)$>\frac{1}{2}$的解集(-∞,1)∪(1,3)
故答案為:(-∞,1)∪(1,3)

點(diǎn)評(píng) 本題考查了分段函數(shù)的不等式的解法,注意定義域的不同求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax-1-lnx(a∈R).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)f(x)在x=1處取得極值,不等式f(x)≥bx-2對(duì)?x∈(0,+∞)恒成立,求實(shí)數(shù)b的取值范圍;
(3)當(dāng)x>y>e時(shí),證明不等式exlny>eylnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x+$\frac{a}{x}$(a為非零實(shí)數(shù))
(1)判斷f(x)的奇偶性,并加以證明;
(2)當(dāng)a=4時(shí),?①用定義證明f(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增;
?②寫出f(x)在(-∞,0)的單調(diào)區(qū)間(不用加以證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,直線x=4與x軸交于點(diǎn)R,與拋物線交于點(diǎn)S,且$|{FS}|=\frac{5}{4}|{RS}|$
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過拋物線的焦點(diǎn)F,作垂直于y軸的直線l,P是拋物線上的一動(dòng)點(diǎn)(異于l與C的交點(diǎn)),過點(diǎn)P的切線交l于點(diǎn)A,交拋物線的準(zhǔn)線于點(diǎn)M,求證:$\frac{{|{FA}|}}{{|{FM}|}}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.x2+y2-2x+4y=0的圓心坐標(biāo)是(1,-2),半徑是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.定義域?yàn)镽的奇函數(shù)f(x)=$\frac{b-h(x)}{1+h(x)}$,其中h(x)是指數(shù)函數(shù),且h(2)=4.
(1)求函數(shù)f(x)的解析式;
(2)求不等式f(2x-1)>f(x+1)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知關(guān)于x的不等式(x-a)(x+1-a)≥0的解集為P,若1∉P,則實(shí)數(shù)a的取值范圍為(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,已知a5=9,S7=49.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=an•2n,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤2}\\{f(4-x),2<x<4}\end{array}$,若當(dāng)方程f(x)=m有四個(gè)不等實(shí)根x1,x2,x3,x4(x1<x2<x3<x4)時(shí),不等式kx3x4+x12+x22≥k+11恒成立,則實(shí)數(shù)k的最小值為 (  )
A.$\frac{9}{8}$B.2-$\frac{\sqrt{3}}{2}$C.$\frac{25}{16}$D.$\sqrt{3}$-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案