分析 (Ⅰ)求當(dāng)a=2時(shí),函數(shù)的導(dǎo)數(shù),求得切線的斜率和切點(diǎn),由點(diǎn)斜式方程即可得到切線方程;
(Ⅱ)求出g(x)的導(dǎo)數(shù),分類討論,令導(dǎo)數(shù)大于0,得增區(qū)間,令導(dǎo)數(shù)小于0,得減區(qū)間.
解答 解:(Ⅰ)因?yàn)楫?dāng)a=2時(shí),f(x)=-x2+2lnx,
所以f′(x)=-2x+$\frac{2}{x}$,
因?yàn)閒(1)=-1,f'(1)=0,
所以切線方程為y=-1;
(Ⅱ)g(x)=x2-2x+alnx的導(dǎo)數(shù)為g′(x)=2x-2+$\frac{a}{x}$=$\frac{{2x}^{2}-2x+a}{x}$,
a≤0,單調(diào)遞增區(qū)間是( $\frac{1+\sqrt{1-2a}}{2}$,+∞);單調(diào)遞減區(qū)間是(0,$\frac{1+\sqrt{1-2a}}{2}$);
0<a<$\frac{1}{2}$,單調(diào)遞增區(qū)間是(0,$\frac{1-\sqrt{1-2a}}{2}$),( $\frac{1+\sqrt{1-2a}}{2}$,+∞);
單調(diào)遞減區(qū)間是( $\frac{1-\sqrt{1-2a}}{2}$,$\frac{1+\sqrt{1-2a}}{2}$);
a≥$\frac{1}{2}$,g(x)的單調(diào)遞增區(qū)間是(0,+∞),無(wú)單調(diào)遞減區(qū)間;
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程和單調(diào)區(qū)間,主要考查導(dǎo)數(shù)的幾何意義,同時(shí)考查函數(shù)的單調(diào)性的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ①④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com