若雙曲線的離心率是2,則實數(shù)k的值是     

試題分析:先根據(jù)雙曲線方程可知a和b,進而求得c的表達式,利用離心率為2求得k的值.根據(jù)題意,由于雙曲線的離心率是,則可知 ,故答案為
點評:本題主要考查了雙曲線的簡單性質.考查了學生的基礎知識的積累.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別是,Q是橢圓外的動點,滿足.點是線段與該橢圓的交點,點T是的中點.

(Ⅰ)設為點的橫坐標,證明;
(Ⅱ)求點T的軌跡的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的離心率為,是其左右頂點,是橢圓上位于軸兩側的點(點軸上方),且四邊形面積的最大值為4.

(1)求橢圓方程;
(2)設直線的斜率分別為,若,設△與△的面積分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的頂點到漸進線的距離等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設連接雙曲線的四個頂點組成的四邊形的面積為,連接其四個焦點組成的四邊形的面積為,則 的最大值是
A.B.C. 1D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

分別求適合下列條件圓錐曲線的標準方程:
(1)焦點 為、且過點橢圓;
(2)與雙曲線有相同的漸近線,且過點的雙曲線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是橢圓的左、右焦點,是橢圓上位于第一象限內(nèi)的一點,點也在橢圓上,且滿足是坐標原點),,若橢圓的離心率為.
(1)若的面積等于,求橢圓的方程;
(2)設直線與(1)中的橢圓相交于不同的兩點,已知點的坐標為(),點在線段的垂直平分線上,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設中心在原點的雙曲線與橢圓+y2=1有公共的焦點,且它們的離心率互為倒數(shù),則該雙曲線的方程是        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓與拋物線的焦點均在軸上,的中心及的頂點均為原點,從每條曲線上各取兩點,將其坐標記錄于下表:










(Ⅰ)求曲線、的標準方程;
(Ⅱ)設直線過拋物線的焦點與橢圓交于不同的兩點、,當時,求直線的方程.

查看答案和解析>>

同步練習冊答案