6.已知非零實(shí)數(shù)a,b,c滿足2b=a+c,且a≠c,求證:$\frac{2}$≠$\frac{1}{a}$+$\frac{1}{c}$.

分析 反證法的證題步驟:假設(shè)結(jié)論不成立,再歸謬,從而導(dǎo)出矛盾,得到結(jié)論.

解答 證明:假設(shè)$\frac{2}$=$\frac{1}{a}$+$\frac{1}{c}$,則$\frac{2}$=$\frac{a+c}{ac}$,
∵2b=a+c,∴b2=ac,
∵2b=a+c,
∴4b2=(a+c)2,
∴4ac=(a+c)2
∴(a-c)2=0,
∴a=c,
與a≠c矛盾,
∴$\frac{2}$≠$\frac{1}{a}$+$\frac{1}{c}$.

點(diǎn)評(píng) 本題以等式為依托,主要考查反證法,關(guān)鍵是掌握反證法的證題步驟,注意矛盾的引出方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)10件產(chǎn)品中有4件不合格,從中任意取出2件,那么在所得的產(chǎn)品中發(fā)現(xiàn)有一件不合格,則另一件也是不合格品的概率( 。
A.$\frac{2}{5}$B.$\frac{2}{3}$C.$\frac{1}{15}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)a>0,函數(shù)f(x)=$\left\{\begin{array}{l}{2+(x-a)^{2},x<\frac{1}{3}}\\{ax+lo{{g}_{3}}_{\;}x,x≥\frac{1}{3}}\end{array}\right.$的最小值為1,則a=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列{an},{bn}滿足a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{3{a}_{n}+2}$,anbn=1,則使bn>63的最小的n為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=-2x3+ax+3在(1,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(  )
A.[6,+∞)B.(6,+∞)C.(-∞,6]D.(-∞,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若${∫}_{2}^{3}$(3x2-2mx)dx=34,則m等于( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系.已知直線l:ρ=-$\frac{6}{3cosθ+4sinθ}$,曲線C:$\left\{\begin{array}{l}x=3+5cosα\\ y=5+5sinα\end{array}\right.$(α為參數(shù)).
(Ⅰ)將直線l化成直角方程,將曲線C化成極坐標(biāo)方程;
(Ⅱ)若將直線l向上平移m個(gè)單位后與曲線C相切,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.試將函數(shù)y=|x-2|-|x+1|表示成分段函數(shù)的形式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow$=(0,1).設(shè)向量$\overrightarrow{x}=\overrightarrow{a}$+(1+cosθ)$\overrightarrow$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+sin2θ•$\overrightarrow$
(1)若$\overrightarrow{x}$∥$\overrightarrow{y}$,且θ=$\frac{π}{3}$求實(shí)數(shù)k的值;
(2)若$\overrightarrow{x}$⊥$\overrightarrow{y}$,且θ=$\frac{2π}{3}$,求實(shí)數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案