2.若兩個(gè)等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,且$\frac{S_n}{T_n}=\frac{2n+1}{n+2}(n∈{N^*})$,則$\frac{a_7}{b_7}$等于(  )
A.2B.$\frac{5}{3}$C.$\frac{9}{5}$D.$\frac{31}{17}$

分析 利用$\frac{a_7}{b_7}$=$\frac{2{a}_{7}}{2_{7}}$=$\frac{{a}_{1}+{a}_{13}}{_{1}+_{13}}$=$\frac{{S}_{13}}{{T}_{13}}$,即可得出結(jié)論.

解答 解:$\frac{a_7}{b_7}$=$\frac{2{a}_{7}}{2_{7}}$=$\frac{{a}_{1}+{a}_{13}}{_{1}+_{13}}$=$\frac{{S}_{13}}{{T}_{13}}$=$\frac{27}{15}$=$\frac{9}{5}$,
故選C.

點(diǎn)評(píng) 本題考查等差數(shù)列通項(xiàng)的性質(zhì),考查等差數(shù)列的求和公式,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=loga(x+1)+b,(a>0,且a≠1)的圖象恒過點(diǎn)A(m,3),則b+m的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知n∈N*,設(shè)Sn是單調(diào)遞減的等比數(shù)列{an}的前n項(xiàng)和,a1=$\frac{1}{2}$且S2+a2,S4+a4,S3+a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{nan}的前n項(xiàng)和為Tn,求證:對(duì)于任意正整數(shù)n,$\frac{1}{2}≤{T_n}<2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)y=sinwx在(0,1)至多有三個(gè)最大值,求(w>0)
(2)y=sin(wx+$\frac{π}{3}$)在(0,1)至多有三個(gè)最大值,求w的取值范圍(w>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)a>b,則下列不等式中恒成立的是(  )
A.$\frac{1}{a}$<$\frac{1}$B.a3>b3C.$\frac{1}{a}$>$\frac{1}$D.a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a5=5,S5=15,則數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前2016項(xiàng)和為( 。
A.$\frac{2016}{2017}$B.$\frac{2017}{2016}$C.$\frac{2015}{2017}$D.$\frac{2015}{2016}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知A={x|x<a},B={x|1<x<4},若A⊆∁RB,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,1)B.(-∞,4]C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.log0.50.125+log2[log3(log464)]等于( 。
A.-3B.3C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)l為直線,α,β為不同的平面,下列命題正確的是( 。
A.若l∥α,l∥β,則α∥βB.若l∥α,α∥β,則l∥βC.若l⊥α,l∥β,則α⊥βD.若l⊥α,l⊥β,則α⊥β

查看答案和解析>>

同步練習(xí)冊(cè)答案