15.已知集合A={0,1,2},B={0,1},則A∩B=(  )
A.{0,1,2}B.{1,2}C.{0,1}D.{0}

分析 由A與B,找出兩集合的交集即可.

解答 解:∵A={0,1,2},B={0,1},
∴A∩B={0,1},
故選:C.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x+4,x≤0}\\{{2}^{x},x>0}\end{array}\right.$,則不等式f(x)≤2的解集為{x|x≤-2 或0<x≤1 }.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.求下列動(dòng)點(diǎn)的軌跡方程:
(1)設(shè)圓C:(x-1)2+y2=1過(guò)原點(diǎn)O作圓的任意弦,求所作弦的中點(diǎn)的軌跡方程;
(2)在平面直角坐標(biāo)系xOy中,點(diǎn)M到點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離多1.記點(diǎn)M的軌跡為C,求軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.解方程:
(1)C${\;}_{13}^{x+1}$=C${\;}_{13}^{2x-3}$;
(2)C${\;}_{x+2}^{x-2}$+C${\;}_{x+2}^{x-3}$=$\frac{1}{10}$A${\;}_{x+3}^{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,已知半徑不等的兩圓均與直線AG相切于點(diǎn)A,大圓的弦BC與小圓相切于點(diǎn)D,
弦AB、AC分別與小圓相交于點(diǎn)E,F(xiàn).
(1)求證:AD為∠BAC的平分線;
(2)求證:BD•CF=CD•BE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)方程4x=|lg(-x)|的兩個(gè)根為x1,x2,則( 。
A.x1x2<0B.x1x2=1C.x1x2>0D.0<x1x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=lnx+x2+2ax,a∈R.
(1)若函數(shù)f(x)在其定義域上為增函數(shù),求a的取值范圍;
(2)當(dāng)$a=\frac{1}{2}$時(shí),函數(shù)$g(x)=\frac{f(x)}{x+1}-x$在區(qū)間[t,+∞)(t∈N*)上存在極值,求t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.等差數(shù)列{an}的公差是2,a4=8,則{an}的前n項(xiàng)和Sn=( 。
A.n(n+1)B.n(n-1)C.$\frac{n(n+1)}{2}$D.$\frac{n(n-1)}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列元素中屬于集合A={(x,y)|x=$\frac{k}{3}$,y=$\frac{k}{4}$,k∈Z}的是( 。
A.$({\frac{1}{3},\frac{3}{4}})$B.$({\frac{2}{3},\frac{3}{4}})$C.(3,4)D.(4,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案