已知、為橢圓的兩個焦點,過作橢圓的弦,若的周長為,則該橢圓的標(biāo)準(zhǔn)方程為     .

試題分析:設(shè)出橢圓方程,利用△AF1B的周長為16,F(xiàn)1(0,-2)、F2(0,2)為橢圓的兩個焦點,求出幾何量,即可得到橢圓的標(biāo)準(zhǔn)方程.設(shè)橢圓的方程為
,那么結(jié)合題意,由于∵△AF1B的周長為16,∴4a=16,∴a=4
∵F1(0,-2)、F2(0,2),∴c=2,所以,故橢圓的方程為,故答案為
點評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線與拋物線相交于兩點,F(xiàn)為拋物線的焦點,若,則k的值為(   )。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)己知、是橢圓)上的三點,其中點的坐標(biāo)為,過橢圓的中心,且,
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線(斜率存在時)與橢圓交于兩點,設(shè)為橢圓 軸負半軸的交點,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓長軸的一個頂點作圓的兩條切線,切點分別為,若 (是坐標(biāo)原點),則橢圓的離心率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的左、右焦點分別為F1、F2,過點 F1作傾斜角為30°的直線l,l與雙曲線的右支交于點P,若線段PF1的中點M落在y軸上,則雙曲線的漸近線方程為                                                      (    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列雙曲線中,漸近線方程是的是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在橢圓+上,為焦點 且,則的面積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)已知橢圓=1(a>b>0)的一個焦點是圓x2+y2-6x+8=0的圓心,且短軸長為8,則橢圓的左頂點為(   )
A.(-3,0)B.(-4,0)C.(-10,0)D.(-5,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖橢圓的兩個焦點為和頂點、構(gòu)成面積為32的正方形.

(1)求此時橢圓的方程;
(2)設(shè)斜率為的直線與橢圓相交于不同的兩點、的中點,且. 問:兩點能否關(guān)于直線對稱. 若能,求出的取值范圍;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案