【題目】已知,.

(1)求曲線在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),若關(guān)于的方程存在兩個(gè)正實(shí)數(shù)根,證明:.

【答案】(1);(2)見解析

【解析】

1)求出函數(shù)的導(dǎo)函數(shù),再計(jì)算出,,即可求出切線方程;

(2)由存在兩個(gè)正實(shí)數(shù)根,整理得方程存在兩個(gè)正實(shí)數(shù)根.利用導(dǎo)數(shù)研究其單調(diào)性、最值,因?yàn)?/span>有兩個(gè)零點(diǎn),即,得.

因?yàn)閷?shí)數(shù),的兩個(gè)根,所以,從而.,則,變形整理得.要證,則只需證,即只要證,

再構(gòu)造函數(shù)即可證明.

(1):

,

∴曲線在點(diǎn)處的切線方程為.

(2)證明:存在兩個(gè)正實(shí)數(shù)根,

整理得方程存在兩個(gè)正實(shí)數(shù)根.

,知,

,則,

當(dāng)時(shí),,上單調(diào)遞增;

當(dāng)時(shí),上單調(diào)遞減.

所以.

因?yàn)?/span>有兩個(gè)零點(diǎn),即,得.

因?yàn)閷?shí)數(shù),的兩個(gè)根,

所以,從而.

,則,變形整理得.

要證,則只需證,即只要證

結(jié)合對數(shù)函數(shù)的圖象可知,只需要證,兩點(diǎn)連線的斜率要比,兩點(diǎn)連線的斜率小即可.

因?yàn)?/span>,所以只要證,整理得.

,則,

所以上單調(diào)遞減,即,

所以成立,故成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實(shí)國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭早日脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了2018年位農(nóng)民的年收人并制成如下頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計(jì)位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

(2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計(jì)算得.利用該正態(tài)分布,求:

(i)在2019年脫貧攻堅(jiān)工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪了位農(nóng)民。若每個(gè)農(nóng)民的年收人相互獨(dú)立,問:這位農(nóng)民中的年收入不少于千元的人數(shù)最有可能是多少?

附:參考數(shù)據(jù)與公式

則①;②;③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),(i)求曲線在點(diǎn)處的切線方程;

(ii)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)拋物線的公共點(diǎn)的橫坐標(biāo)為,過且與相切的直線交于另一點(diǎn),過且與相切的直線交于另一點(diǎn),記的面積.

(Ⅰ)求的值(用表示);

(Ⅱ)若,求的取值范圍.

注:若直線與拋物線有且只有一個(gè)公共點(diǎn),且與拋物線的對稱軸不平行也不重合,則稱該直線與拋物線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在古裝電視劇《知否》中,甲乙兩人進(jìn)行一種投壺比賽,比賽投中得分情況分有初”“貫耳”“散射”“雙耳”“依竿五種,其中有初兩籌,貫耳四籌散射五籌,雙耳六籌,依竿十籌,三場比賽得籌數(shù)最多者獲勝.假設(shè)甲投中有初的概率為,投中貫耳的概率為,投中散射的概率為,投中雙耳的概率為,投中依竿的概率為,乙的投擲水平與甲相同,且甲乙投擲相互獨(dú)立.比賽第一場,兩人平局;第二場,甲投了個(gè)貫耳,乙投了個(gè)雙耳,則三場比賽結(jié)束時(shí),甲獲勝的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為,是橢圓上的一個(gè)動(dòng)點(diǎn),且面積的最大值為.

(1)求橢圓的方程;

(2)設(shè)直線斜率為,且與橢圓的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,是邊長為2的菱形,且是矩形,,且平面平面,點(diǎn)在線段上移動(dòng)(不與重合),的中點(diǎn).

1)當(dāng)四面體的外接球的表面積為時(shí),證明:.平面

2)當(dāng)四面體的體積最大時(shí),求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北方的冬天戶外冰天雪地,若水管裸露在外,則管內(nèi)的水就會(huì)結(jié)冰從而凍裂水管,給用戶生活帶來不便.每年冬天來臨前,工作人員就會(huì)給裸露在外的水管保暖:在水管外面包裹保溫帶,用一條保溫帶盤旋而上一次包裹到位.某工作人員采用四層包裹法(除水管兩端外包裹水管的保溫帶都是四層):如圖1所示是相鄰四層保溫帶的下邊緣輪廓線,相鄰兩條輪廓線的間距是帶寬的四分之一.設(shè)水管的直徑與保溫帶的寬度都為4cm.在圖2水管的側(cè)面展開圖中,此保溫帶的輪廓線與水管母線所成的角的余弦值是( )(保溫帶厚度忽略不計(jì))

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,,分別為內(nèi)角,的對邊,且滿.

1)求的大;

2)再在①,②,③這三個(gè)條件中,選出兩個(gè)使唯一確定的條件補(bǔ)充在下面的問題中,并解答問題.________,________,求的面積.

查看答案和解析>>

同步練習(xí)冊答案