設(shè)F為拋物線C:y2=4x的焦點(diǎn),過點(diǎn)F(−1,0)的直線l交拋物線C于A,B兩點(diǎn),點(diǎn)Q為線段AB的中點(diǎn).若|FQ|=2,則直線l的斜率等于       

【命題意圖】本題考查直線與拋物線的位置關(guān)系,屬于中檔題

【答案解析】±1  設(shè)直線l的方程為y=k(x+1),聯(lián)立消去yk2x2+(2k2−4)x+k2=0,由韋達(dá)定理,xA+ xB =−,于是xQ==,把xQ帶入y=k(x+1),得到yQ=,根據(jù)|FQ|=,解出k=±1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌二模)設(shè)F為拋物線C:y2=2px(p>0)的焦點(diǎn),過F且與拋物線C對(duì)稱軸垂直的直線被拋物線C截得線段長(zhǎng)為4.
(1)求拋物線C方程.
(2)設(shè)A、B為拋物線C上異于原點(diǎn)的兩點(diǎn)且滿足FA⊥FB,延長(zhǎng)AF、BF分別拋物線C于點(diǎn)C、D.求:四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F為拋物線C:y2=4x的焦點(diǎn),過點(diǎn)P(-1,0)的直線l交拋物線C于兩點(diǎn)A,B,點(diǎn)Q為線段AB的中點(diǎn),若|FQ|=2,則直線l的斜率等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江)設(shè)F為拋物線C:y2=4x的焦點(diǎn),過點(diǎn)P(-1,0)的直線l交拋物線C于兩點(diǎn)A,B,點(diǎn)Q為線段AB的中點(diǎn),若|FQ|=2,則直線l的斜率等于
不存在
不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F為拋物線C:y2=4x的焦點(diǎn),過F的直線交拋物線C于A、B兩點(diǎn),其中點(diǎn)A在x軸的下方,且滿足
AF
=4
FB
,則直線AB的方程為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案