【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實(shí)數(shù)a的取值范圍為( )
A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)
【答案】B
【解析】,在上恒成立, 在上是增函數(shù),又是奇函數(shù),∴不等式可化為,結(jié)合函數(shù)的定義域可知, 須滿足,解得,故選B.
【方法點(diǎn)晴】本題主要考查函數(shù)的定義域、 單調(diào)性、奇偶性性,利用單調(diào)性解不等式以及導(dǎo)數(shù)在函數(shù)中的應(yīng)用,屬于難題.根據(jù)函數(shù)的單調(diào)性解不等式應(yīng)注意以下三點(diǎn):(1)一定注意抽象函數(shù)的定義域(這一點(diǎn)是同學(xué)們?nèi)菀资韬龅牡胤,不能掉以輕心);(2)注意應(yīng)用函數(shù)的奇偶性(往往需要先證明是奇函數(shù)還是偶函數(shù));(3)化成 后再利用單調(diào)性和定義域列不等式組
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,書中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”,該著作中提出了一種解決此問題的方法:“重置二位,左位減八,余加右位,至盡虛減一,即得.”通過對(duì)該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時(shí),均可采用此方法求解,如圖是解決這類問題的程序框圖,若輸入,則輸出的結(jié)果為( )
A.80B.47C.79D.48
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中真命題的個(gè)數(shù)是
中,是的三內(nèi)角A,B,C成等差數(shù)列的充要條件;
若“,則”的逆命題為真命題;
是或充分不必要條件;
是的充要條件.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年5月,重慶市育才中學(xué)開展了“最美教室”文化布置評(píng)比活動(dòng),工作人員隨機(jī)抽取了16間教室進(jìn)行量化評(píng)估,其中評(píng)分不低于9分的教室評(píng)為優(yōu)秀,以下表格記錄了它們的評(píng)分情況:
分?jǐn)?shù)段 | ||||
教室間數(shù) | 1 | 3 | 8 | 4 |
(1)現(xiàn)從16間教室隨機(jī)抽取3個(gè),求至多有1個(gè)優(yōu)秀的概率;
(2)以這16間教室評(píng)分?jǐn)?shù)據(jù)估計(jì)全校教室的布置情況,若從全校所有教室中任選3個(gè),記表示抽到優(yōu)秀的教室個(gè)數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說:“我羊所吃的禾苗只有馬的一半,”馬主人說:“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應(yīng)償還多少?該問題中,1斗為10升,則馬主人應(yīng)償還( )升粟?
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,直線與圓交于,兩點(diǎn).
(1)若直線過點(diǎn),且,求被橢圓所截得的弦的長度;
(2)若已知點(diǎn)在橢圓上,動(dòng)點(diǎn)滿足,請(qǐng)判斷點(diǎn)與圓的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右頂點(diǎn)分別為C、D,且過點(diǎn),P是橢圓上異于C、D的任意一點(diǎn),直線PC,PD的斜率之積為.
(1)求橢圓的方程;
(2)O為坐標(biāo)原點(diǎn),設(shè)直線CP交定直線x = m于點(diǎn)M,當(dāng)m為何值時(shí),為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,為自然對(duì)數(shù)的底數(shù),).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求使得恒成立的最小整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,4,8,14,23,36,54,則該數(shù)列的第19項(xiàng)為( )(注:)
A.1624B.1024C.1198D.1560
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com