【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.
(1)求直線和圓的普通方程;
(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.
【答案】(1),;(2)
【解析】分析:(1)用代入法消參數(shù)可得直線的普通方程,由公式可化極坐標方程為直角坐標方程;
(2)把直線的參數(shù)方程代入曲線的直角坐標方程,其中參數(shù)的絕對值表示直線上對應點到的距離,因此有,,直接由韋達定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關系,由此可求得的取值范圍.
詳解:(1)直線的參數(shù)方程為,
普通方程為,
將代入圓的極坐標方程中,
可得圓的普通方程為,
(2)解:直線的參數(shù)方程為代入圓的方程為 可得:
(*),
且由題意 ,,
.
因為方程(*)有兩個不同的實根,所以,
即,
又,
所以.
因為,所以
所以.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面是直角梯形,,,,側面是等腰直角三角形,,平面平面,點分別是棱上的點,平面平面.
(1)確定點的位置,并說明理由;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一 廠家在一批產(chǎn)品出廠前要對其進行質量檢驗,檢驗方案是: 先從這批產(chǎn)品中任取3件進行檢驗,這3件產(chǎn)品中優(yōu)質品的件數(shù)記為.如果,再從這批產(chǎn)品中任取3件進行檢驗,若都為優(yōu)質品,則這批產(chǎn)品通過檢驗;如果,再從這批產(chǎn)品中任取4件進行檢驗,若都為優(yōu)質品,則這批產(chǎn)品通過檢驗;其他情況下,這批產(chǎn)品都不能通過檢驗.
假設這批產(chǎn)品的優(yōu)質品率為50%,即取出的產(chǎn)品是優(yōu)質品的概率都為,且各件產(chǎn)品是否為優(yōu)質品相互獨立.
(1) 求這批產(chǎn)品通過檢驗的概率;
(2) 已知每件產(chǎn)品檢驗費用為100元,凡抽取的每件產(chǎn)品都需要檢驗,對這批產(chǎn)品作質量檢驗所需的費用記為(單位: 元),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的焦距為,斜率為的直線與橢圓交于兩點,若線段的中點為,且直線的斜率為.
(1)求橢圓的方程;
(2)若過左焦點斜率為的直線與橢圓交于點 為橢圓上一點,且滿足,問:是否為定值?若是,求出此定值,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個口袋里裝有個白球和個紅球,從口袋中任取個球.
(1)共有多少種不同的取法?
(2)其中恰有一個紅球,共有多少種不同的取法?
(3)其中不含紅球,共有多少種不同的取法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù),有下列結論:
①的定義域為(-1, 1); ②的值域為(, );
③的圖象關于原點成中心對稱; ④在其定義域上是減函數(shù);
⑤對的定義城中任意都有.
其中正確的結論序號為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:,;命題q:方程表示雙曲線.
⑴若命題p為真命題,求實數(shù)m的取值范圍;
⑵若命題“”為真命題,“”為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為打入國際市場,決定從,兩種產(chǎn)品中只選擇一種進行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關數(shù)據(jù)如下表:(單位:萬美元)
項目類別 | 年固定成本 | 每件產(chǎn)品成本 | 每件產(chǎn)品銷售價 | 每年最多可生產(chǎn)的件數(shù) |
產(chǎn)品 | 20 | 10 | 200 | |
產(chǎn)品 | 40 | 8 | 18 | 120 |
其中年固定成本與年生產(chǎn)的件數(shù)無關,為待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料價格決定,預計.另外,年銷售件產(chǎn)品時需上交萬美元的特別關稅.假設生產(chǎn)出來的產(chǎn)品都能在當年銷售出去.
(1)寫出該廠分別投資生產(chǎn),兩種產(chǎn)品的年利潤、與生產(chǎn)相應產(chǎn)品的件數(shù)之間的函數(shù)關系,并指明其定義域;
(2)如何投資才可獲得最大年利潤?請你做出規(guī)劃.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com