5.已知函數(shù)f(x)=x+alnx
(1)若函數(shù)f(x)在x=2處的切線與直線x-y+1=0垂直,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)沒(méi)有零點(diǎn),求a的取值范圍.

分析 (1)求出f(x)的導(dǎo)數(shù),可得切線的斜率,由兩直線垂直的條件:斜率之積為-1,解方程可得a;
(2)求得f(x)的導(dǎo)數(shù),討論a≥0時(shí),a<0時(shí),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間;
(3)討論a>0,a=0,a<0,運(yùn)用函數(shù)的單調(diào)性和函數(shù)的零點(diǎn)存在定理,以及函數(shù)的最小值大于0,解不等式即可得到所求范圍.

解答 解:(1)f(x)=x+alnx的導(dǎo)數(shù)為$f'(x)=\frac{x+a}{x}(x>0)$.    
由題意在x=2處的切線與直線x-y+1=0垂直,
可得$f'(2)=\frac{2+a}{2}=-1$,解得a=-4;
(2)因$f'(x)=\frac{x+a}{x}(x>0)$,
當(dāng)a≥0時(shí),在x∈(0,+∞)時(shí),f'(x)>0,可得f(x)的單調(diào)區(qū)間是(0,+∞);
當(dāng)a<0時(shí),f(x)與f'(x)在定義域上的情況如下:

x(0,-a)-a(-a,+∞)
f'(x)-0+
f(x)極小值
f(x)的單調(diào)減區(qū)間是(0,-a),單調(diào)增區(qū)間是(-a,+∞).
(3)由(2)可知①當(dāng)a>0時(shí),(0,+∞)是函數(shù)f(x)的單調(diào)增區(qū)間,
且有$f({e^{-\frac{1}{a}}})={e^{-\frac{1}{a}}}-1<1-1<0,f(1)=1>0$,此時(shí)函數(shù)有零點(diǎn),不符合題意;
②當(dāng)a=0時(shí),函數(shù)f(x)在定義域(0,+∞)上沒(méi)有零點(diǎn);
③當(dāng)a<0時(shí),f(-a)是函數(shù)f(x)的極小值,也是函數(shù)f(x)的最小值,
當(dāng)f(-a)=a(ln(-a)-1)>0,即a>-e時(shí),函數(shù)f(x)沒(méi)有零點(diǎn).
綜上所述,當(dāng)-e<a≤0時(shí),f(x)沒(méi)有零點(diǎn).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查分類討論的思想方法,同時(shí)考查函數(shù)的零點(diǎn)問(wèn)題的解法,注意運(yùn)用函數(shù)的零點(diǎn)存在定理,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,且各棱長(zhǎng)均相等,D,E,F(xiàn)分別為棱AB,BC,A1C1的中點(diǎn).
(Ⅰ)證明EF∥平面A1CD;
(Ⅱ)證明平面A1CD⊥平面A1ABB1;
(Ⅲ)求直線BC與平面A1CD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)若$y={log_{\frac{1}{3}}}(m{x^2}+2x+m)$的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈[-1,1]時(shí),求函數(shù)$y={[{(\frac{1}{3})^x}]^2}-2a•{(\frac{1}{3})^x}+3$的最小值h(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)P為曲線C:y=x2-2x+3上的點(diǎn),且曲線C在點(diǎn)P處切線傾斜角的取值范圍為[0,$\frac{π}{4}$],則點(diǎn)P橫坐標(biāo)的取值范圍為( 。
A.[-1,-$\frac{1}{2}$]B.[-1,0]C.[0,1]D.[1,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.2013年,首都北京經(jīng)歷了59年來(lái)霧霾天氣最多的一個(gè)月.經(jīng)氣象局統(tǒng)計(jì),北京市從1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣.《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》依據(jù)AQI指數(shù)高低將空氣污染級(jí)別分為:優(yōu),指數(shù)為0-50;良,指數(shù)為51-100;輕微污染,指數(shù)為101-150;輕度污染,指數(shù)為151-200;中度污染,指數(shù)為201-250;中度重污染,指數(shù)為251-300;重度污染,指數(shù)大于300.下面表1是某氣象觀測(cè)點(diǎn)記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計(jì)結(jié)果,表2是該觀測(cè)點(diǎn)記錄的4天里,AQI指數(shù)M與當(dāng)天的空氣水平可見(jiàn)度y(千米)的情況,
表1:北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計(jì)
AQI指數(shù)[0,200](200,400](400,600](600,800](800,1000]
頻數(shù)361263
表2:AQI指數(shù)M與當(dāng)天的空氣水平可見(jiàn)度y(千米)情況
AQI指數(shù)M900700300100
空氣可見(jiàn)度y(千米)0.53.56.59.5
(1)小王在記錄表1數(shù)據(jù)的觀測(cè)點(diǎn)附近開(kāi)了一家小飯館,飯館生意的好壞受空氣質(zhì)量影響很大.假設(shè)每天空氣質(zhì)量的情況不受前一天影響.經(jīng)小王統(tǒng)計(jì):AQI指數(shù)不高于200時(shí),飯館平均每天凈利潤(rùn)約700元,AQI指數(shù)在200至400時(shí),飯館平均每天凈利潤(rùn)約400元,AQI指數(shù)大于400時(shí),飯館每天要凈虧損200元,求小王某一天能夠獲利的概率;
(2)設(shè)變量x=$\frac{M}{100}$,根據(jù)表2的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(用最小二乘法求線性回歸方程系數(shù)公式b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知正棱錐P-ABCD中,PA⊥平面ABCD,△PAC為等腰直角三角形,PA=6,底面ABCD為平行四邊形,且∠ABC+∠ADC=90°,E為線段AD的中點(diǎn),F(xiàn)在線段PD上運(yùn)動(dòng),記$\frac{PF}{PD}$=λ.
(1)若λ=$\frac{1}{2}$,證明:平面BEF⊥平面ABCD;
(2)當(dāng)λ=$\frac{1}{3}$時(shí),PA=AB=AC,求三棱錐C-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.一個(gè)透明的球形裝飾品內(nèi)放置了兩個(gè)公共底面的圓錐,且這兩個(gè)圓錐的頂點(diǎn)和底面圓周都在這個(gè)球面上,如圖,圓錐圓錐底面面積是這個(gè)球面面積的$\frac{3}{16}$,設(shè)球的半徑為R,圓錐底面半徑為r.則兩個(gè)圓錐的體積之和與球的體積之比為$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某單位為了了解用電量y(度)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫,并制作了對(duì)照表:
氣溫x(℃)181310-1
用電量y(度)24343864
由表中數(shù)據(jù)得線性回歸方程為$\stackrel{∧}{y}$=bx+a中b=-2,預(yù)測(cè)當(dāng)氣溫為-3℃時(shí),用電量的度數(shù)約為(  )
A.68B.67C.66D.65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.7名身高互不相等的學(xué)生,分別按下列要求排列,各有多少種不同的排法?
(1)7人站成一排,要求較高的3個(gè)學(xué)生站在一起;
(2)7人站成一排,要求較高的3個(gè)學(xué)生兩兩不相鄰.
(3)7人站成一排,要求最高的站在中間,并向左、右兩邊看,身高逐個(gè)遞減.

查看答案和解析>>

同步練習(xí)冊(cè)答案