【題目】某公司為招聘新員工設(shè)計(jì)了一個(gè)面試方案:應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,按題目要求獨(dú)立完成.規(guī)定:至少正確完成其中2道題的便可通過.已知6道備選題中應(yīng)聘者甲有4道題能正確完成,2道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列及數(shù)學(xué)期望;
(2)請(qǐng)分析比較甲、乙兩人誰面試通過的可能性大?
【答案】(1)詳見解析;(2)從做對(duì)題數(shù)的數(shù)學(xué)期望考查,兩人水平相當(dāng);從做對(duì)題數(shù)的方差考查,甲較穩(wěn)定;從至少完成2道題的概率考查,甲獲得面試通過的可能性大.
【解析】試題分析:(1)確定甲、乙兩人正確完成面試題數(shù)的取值,求出相應(yīng)的概率,即可得到分布列,并計(jì)算其數(shù)學(xué)期望;
(2)確定Dξ<Dη,即可比較甲、乙兩人誰的面試通過的可能性大.
試題解析:
(1)設(shè)甲正確完成面試的題數(shù)為,則的取值分別為1,2,3
; ; ;
應(yīng)聘者甲正確完成題數(shù)的分布列為
1 | 2 | 3 | |
設(shè)乙正確完成面試的題數(shù)為,則取值分別為0,1,2,3
,
應(yīng)聘者乙正確完成題數(shù)的分布列為:
0 | 1 | 2 | 3 | |
.
(或∵∴)
(2)因?yàn)?/span>,
所以
綜上所述,從做對(duì)題數(shù)的數(shù)學(xué)期望考查,兩人水平相當(dāng);
從做對(duì)題數(shù)的方差考查,甲較穩(wěn)定;
從至少完成2道題的概率考查,甲獲得面試通過的可能性大
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為.
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;
(2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥DC,AE⊥DC,BE∥AD.M、N分別是AD、BE上的點(diǎn),且AM=BN,將三角形ADE沿AE折起,則下列說法正確的是 (填上所有正確說法的序號(hào)).
①不論D折至何位置(不在平面ABC內(nèi))都有MN∥平面DEC;
②不論D折至何位置都有MN⊥AE;
③不論D折至何位置(不在平面ABC內(nèi))都有MN∥AB;
④在折起過程中,一定存在某個(gè)位置,使EC⊥AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究型學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響.部分統(tǒng)計(jì)數(shù)據(jù)如下表:
使用智能手機(jī) | 不使用智能手機(jī) | 總計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績(jī)不優(yōu)秀 | 16 | 2 | 18 |
總計(jì) | 20 | 10 | 30 |
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
經(jīng)計(jì)算的觀測(cè)值為10,則下列選項(xiàng)正確的是( )
A. 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
B. 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無影響
C. 在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
D. 在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無影響
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若曲線在處的切線的方程為,求實(shí)數(shù)的值;
(2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;
(3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究型學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響.部分統(tǒng)計(jì)數(shù)據(jù)如下表:
使用智能手機(jī) | 不使用智能手機(jī) | 總計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績(jī)不優(yōu)秀 | 16 | 2 | 18 |
總計(jì) | 20 | 10 | 30 |
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
經(jīng)計(jì)算的觀測(cè)值為10,則下列選項(xiàng)正確的是( )
A. 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
B. 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無影響
C. 在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
D. 在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無影響
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市一汽車出租公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機(jī)抽取了這兩種車型各100輛,分別統(tǒng)計(jì)了每輛車某個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表:
A車型 B車型
出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
車輛數(shù) | 5 | 10 | 30 | 35 | 15 | 3 | 2 | 車輛數(shù) | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
(Ⅰ)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機(jī)抽取一輛,估計(jì)這輛汽車恰好是A型車的概率;
(Ⅱ)根據(jù)這個(gè)星期的統(tǒng)計(jì)數(shù)據(jù),估計(jì)該公司一輛A型車,一輛B型車一周內(nèi)合計(jì)出租天數(shù)恰好為4天的概率;
(Ⅲ)
(。┰噷懗A,B兩種車型的出租天數(shù)的分布列及數(shù)學(xué)期望;
(ⅱ)如果兩種車輛每輛車每天出租獲得的利潤(rùn)相同,該公司需要從A,B兩種車型中購買一輛(注:兩種車型的采購價(jià)格相當(dāng)),請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),建議應(yīng)該購買哪一種車型,并說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過拋物線上一點(diǎn)作拋物線的切線交軸于點(diǎn),交軸于點(diǎn),當(dāng)時(shí),.
(1)判斷的形狀,并求拋物線的方程;
(2)若兩點(diǎn)在拋物線上,且滿足,其中點(diǎn),若拋物線上存在異于的點(diǎn),使得經(jīng)過三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com