(2009•湖北模擬)給出下列四個(gè)命題:
①若直線l⊥平面α,l∥平面β,則α⊥β;
②各側(cè)面都是正方形的棱柱一定是正棱柱;
③一個(gè)二面角的兩個(gè)半平面所在平面分別垂直于另一個(gè)二面角的兩個(gè)半平面所在平面,則這兩個(gè)二面角的平面角互為補(bǔ)角;
④過空間任意一點(diǎn)一定可以作一個(gè)和兩條異面直線都平行的平面.
其中正確的命題的個(gè)數(shù)有(  )
分析:①利用線面垂直和線面平行的性質(zhì)判斷.②利用正棱柱的定義判斷.③利用二面角的定義和性質(zhì)判斷.④利用線面平行的性質(zhì)判斷.
解答:解:①根據(jù)線面垂直的性質(zhì)可知,當(dāng)l⊥平面α,l∥平面β,必有α⊥β,所以①正確.
②由棱柱的定義可得:棱柱的側(cè)面都是矩形,所以各側(cè)面都是正方形的棱柱一定是直棱柱,但是底面不一定是正多邊形,所以②錯(cuò)誤.
③一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)角的平面角沒有任何關(guān)系(如圖).所以③錯(cuò)誤.
④當(dāng)空間一點(diǎn)與兩異面中一條直線確定的平面恰好與另一條直線平行時(shí),過該點(diǎn)不能作平面與兩異面直線都平行,故④錯(cuò)誤.
故正確的命題個(gè)數(shù)有1個(gè).
故選A.
點(diǎn)評:本題主要考查了空間直線平面的位置關(guān)系的判斷以及二面角的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)半徑為1的球面上有A、B、C三點(diǎn),其中點(diǎn)A與B、C兩點(diǎn)間的球面距離均為
π
2
,B、C兩點(diǎn)間的球面距離均為
π
3
,則球心到平面ABC的距離為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)已知數(shù)列{an}滿足a1=1,an+1=
1
2
an+n(n為奇數(shù))
an-2n(n為偶數(shù))
且bn=a2n-2(n∈N*
(1)求a2,a3,a4
(2)求證:數(shù)列{bn}是等比數(shù)列,并求其通項(xiàng)公式;
(3)若Cn=-nbn,Sn為為數(shù)列{Cn}的前n項(xiàng)和,求Sn-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)已知命題p:|x|<2,命題q:x2-x-2<0,則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)已知函數(shù)y=f(x)是R上的偶函數(shù),對于x∈R都有f(x-6)=f(x)+f(3)成立,且f(0)=-2,當(dāng)x1,x2∈[0,3],且x1≠x2時(shí),都有
f(x1)-f(x2)x1-x2
>0.則給出下列命題:
①f(2010)=-2;
②函數(shù)y=f(x)圖象的一條對稱軸為x=-6;
③函數(shù)y=f(x)在[-9,-6]上為增函數(shù);
④方程f(x)=0在[-9,9]上有4個(gè)根.
其中正確命題的序號(hào)是
①②④
①②④
.(請將你認(rèn)為是真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,例如解析式為y=2x2+1,值域?yàn)閧9}的“孿生函數(shù)”三個(gè):
(1)y=2x2+1,x∈{-2};(2)y=2x2+1,x∈{2};(3)y=2x2+1,x∈{-2,2}.
那么函數(shù)解析式為y=2x2+1,值域?yàn)閧1,5}的“孿生函數(shù)”共有( 。

查看答案和解析>>

同步練習(xí)冊答案