如圖(1),等腰直角三角形的底邊,點(diǎn)在線段上,于,現(xiàn)將沿折起到的位置(如圖(2)).
(Ⅰ)求證:;
(Ⅱ)若,直線與平面所成的角為,求長(zhǎng).
(Ⅰ)詳見解析(Ⅱ).
解析試題分析:(Ⅰ)要證線線垂直,可先考慮純線面垂直,要證線面垂直,先找出圖中的線線垂直,使結(jié)論得證;(Ⅱ)為方便利用直線與平面所成的角為,可建立空間直角坐標(biāo)系,利用空間向量相關(guān)計(jì)算公式建立關(guān)于長(zhǎng)度的方程,解之即可.
試題解析:(Ⅰ),,,平面,
又,;
(Ⅱ),
分別以所在直線為軸,軸,軸建立空間直角坐標(biāo)系(如圖)
設(shè),則,,,
可得 ,
設(shè)平面的法向量,,令,可得,因此是平面的一個(gè)法向量,,與平面所成的角為,,即,
解之得:,或(舍),因此可得的長(zhǎng)為.
考點(diǎn):直線與平面的位置關(guān)系、空間向量的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖示,在底面為直角梯形的四棱椎P ABCD中,AD//BC,ÐABC= 900, PA^平面ABCD,PA= 4,AD= 2,AB=2,BC = 6.
(1)求證:BD^平面PAC ;
(2)求二面角A—PC—D的正切值;
(3)求點(diǎn)D到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AC 是圓 O 的直徑,點(diǎn) B 在圓 O 上,∠BAC=30°,BM⊥AC交 AC 于點(diǎn) M,EA⊥平面ABC,F(xiàn)C//EA,AC=4,EA=3,F(xiàn)C=1.
(I)證明:EM⊥BF;
(II)求平面 BEF 與平面ABC 所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱中,,,異面直線與所成
的角為.
(Ⅰ)求證:;
(Ⅱ)設(shè)是的中點(diǎn),求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在邊長(zhǎng)為的正方形ABCD中,E、F分別為BC、CD的中點(diǎn),M、N分別為AB、CF的中點(diǎn),現(xiàn)沿AE、AF、EF折疊,使B、C、D三點(diǎn)重合,重合后的點(diǎn)記為,構(gòu)成一個(gè)三棱錐.
(1)請(qǐng)判斷與平面的位置關(guān)系,并給出證明;
(2)證明平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,AC為的直徑,D為的中點(diǎn),E為BC的中點(diǎn).
(Ⅰ)求證:AB∥DE;
(Ⅱ)求證:2AD·CD=AC·BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,六棱錐的底面是邊長(zhǎng)為1的正六邊形,底面。
(Ⅰ)求證:平面平面;
(Ⅱ)若直線PC與平面PDE所成角為,求三棱錐高的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(cè)(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點(diǎn)M是A1B1的中點(diǎn).
(1)求證:B1C∥平面AC1M;
(2)求證:平面AC1M⊥平面AA1B1B.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com