【題目】受轎車在保修期內維修費等因素的影響,企業(yè)產(chǎn)生每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關,某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年,現(xiàn)從該廠已售出的兩種品牌轎車中隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:

品牌

首次出現(xiàn)故障時間x(年)

0<x<1

1<x≤2

x>2

0<x≤2

x>2

轎車數(shù)量(輛)

2

3

45

5

45

每輛利潤(萬元)

1

2

3

1.8

2.9

將頻率視為概率,解答下列問題:
(Ⅰ)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求首次出現(xiàn)故障發(fā)生在保修期內的概率;
(Ⅱ)若該廠生產(chǎn)的轎車均能售出,記住生產(chǎn)一輛甲品牌轎車的利潤為X1 , 生產(chǎn)一輛乙品牌轎車的利潤為X2 , 分別求X1 , X2的分布列;
(Ⅲ)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產(chǎn)其中一種品牌轎車,若從經(jīng)濟效益的角度考慮,你認為應該產(chǎn)生哪種品牌的轎車?說明理由.

【答案】解:(I)設“甲品牌轎車首次出現(xiàn)故障發(fā)生在保修期內”為事件A,則P(A)=
(II)依題意得,X1的分布列為

X1

1

2

3

P

X2的分布列為

X2

1.8

2.9

P

(III)由(II)得E(X1)=1× +2× +3× =2.86(萬元 )
E(X2)=1.8× +2.9× =2.79(萬元 )
∵E(X1)>E(X2),
∴應生產(chǎn)甲品牌轎車.
【解析】(I)根據(jù)保修期為2年,可知甲品牌轎車首次出現(xiàn)故障發(fā)生在保修期內的轎車數(shù)量為2+3,由此可求其概率;(II)求出概率,可得X1、X2的分布列;(III)由(II),計算期為E(X1)=1× +2× +3× =2.86(萬元 ),E(X2)=1.8× +2.9× =2.79(萬元 ),比較期望可得結論.
【考點精析】根據(jù)題目的已知條件,利用離散型隨機變量及其分布列的相關知識可以得到問題的答案,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法:①殘差可用來判斷模型擬合的效果;

②設有一個回歸方程,變量x增加一個單位時,y平均增加5個單位;

③線性回歸方程必過

④在一個2×2列聯(lián)表中,由計算得=13.079,則有99%的把握確認這兩個變量間有關系(其中);

其中錯誤的個數(shù)是(

A. 0 B. 1 C. 2 D. 3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 )的焦點為 , 在拋物線 ,直線 與拋物線 交于 , 兩點, 為坐標原點.

(1)求拋物線 的方程;

(2)求 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班50位學生期中考試數(shù)學成績的頻率直方分布圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求圖中x的值;
(2)從成績不低于80分的學生中隨機選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為ξ,求ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用區(qū)間表示);
(2)求函數(shù)f(x)=2x3﹣3(1+a)x2+6ax在D內的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標中,設橢圓的左右兩個焦點分別為,,過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.

(1)求橢圓的方程;

(2)已知,經(jīng)過點且斜率為,直線與橢圓有兩個不同的交點,請問是否存在常數(shù),使得向量共線?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4﹣4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知直線l上兩點M,N的極坐標分別為(2,0),( ),圓C的參數(shù)方程 (θ為參數(shù)).
(Ⅰ)設P為線段MN的中點,求直線OP的平面直角坐標方程;
(Ⅱ)判斷直線l與圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構成的集合.對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n);記K(A)為|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;

1

1

﹣0.8

0.1

﹣0.3

﹣1


(2)設數(shù)表A∈S(2,3)形如

1

1

c

a

b

﹣1

求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若如圖所示的程序框圖輸出的S是126,則n條件為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案