【題目】已知,設函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在整數(shù),對于任意,關于的方程在區(qū)間上有唯一實數(shù)解?若存在,求的值;若不存在,說明理由.
【答案】(1)當時,單調(diào)遞減區(qū)間是,當時,單調(diào)遞減區(qū)間是和,單調(diào)遞增區(qū)間是
(2)存在,
【解析】
(1)根據(jù)題意單調(diào),求導,令,分,兩者情況討論求解.
(2)先求時,的根,得到區(qū)間,當時,求導 ,討論,時,,當且,利用等比數(shù)列求和公式得到,分析得,得到在R上是減函數(shù),再論證,,利用零點存在定理得到結(jié)論.
(1)因為,
所以,,
令,
,
當時,,,所以在R上單調(diào)遞減,
當時,,方程有兩個不等根,
當時,,當時,,當時,,
所以在遞減,在上遞增.
綜上:當時,的減區(qū)間是,
當時, 的減區(qū)間是,,增區(qū)間是.
(2)存在,對于任意,關于的方程在區(qū)間上有唯一實數(shù)解,理由如下:
當時,,令,解得,
所以關于的方程有唯一實數(shù)解.
當時,,,
若,則,
若,,
若且,,當時,,所以
當時,,所以,
故在R上是減函數(shù).
又,
,
,
,
所以方程在區(qū)間上有唯一實數(shù)解.
綜上:對于任意,關于的方程在區(qū)間上有唯一實數(shù)解,所以.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,上頂點為A,過的直線與y軸交于點M,滿足(O為坐標原點),且直線l與直線之間的距離為.
(1)求橢圓C的方程;
(2)在直線上是否存在點P,滿足?存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,直線過焦點且與拋物線交于、兩點,當直線的傾斜角為30°時,.
(1)求拋物線方程.
(2)在平面直角坐標系中,是否存在定點,當直線繞旋轉(zhuǎn)時始終都滿足平分.若存在,求出的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一對夫婦為了給他們的獨生孩子支付將來上大學的費用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為保持不變,且每年到期時存款(含利息)自動轉(zhuǎn)為新的一年定期,當孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的離心率為,以橢圓的上頂點為圓心作圓,
,圓與橢圓在第一象限交于點,在第二象限交于點.
(1)求橢圓的方程;
(2)求的最小值,并求出此時圓的方程;
(3)設點是橢圓上異于的一點,且直線分別與軸交于點為坐標原點,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】歐陽修《賣油翁》中寫道:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌滴瀝之,自錢孔入,而錢不濕.已知銅錢是直徑為4 cm的圓面,中間有邊長為1 cm的正方形孔,若隨機向銅錢上滴一滴油(油滴整體落在銅錢內(nèi)),則油滴整體(油滴是直徑為0.2 cm的球)正好落入孔中的概率是_____.(不作近似計算)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在①,②,③這三個條件中任選一個,補充在下面的問題中,并解決該問題.
已知的內(nèi)角,,的對邊分別為,,______________,,,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當務之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:
研發(fā)費用(百萬元) | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
銷量(萬盒) | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求與的相關系數(shù)精確到0.01,并判斷與的關系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);
(2)該藥企準備生產(chǎn)藥品的三類不同的劑型,,,并對其進行兩次檢測,當?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學期望.
附:(1)相關系數(shù)
(2),,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機構(gòu)數(shù)(個)與對應年份編號的散點圖(為便于計算,將 2013 年編號為 1,2014 年編號為 2,…,2018年編號為 6,把每年的公共圖書館業(yè)機構(gòu)個數(shù)作為因變量,把年份編號從 1 到 6 作為自變量進行回歸分析),得到回歸直線,其相關指數(shù),給出下列結(jié)論,其中正確的個數(shù)是( )
①公共圖書館業(yè)機構(gòu)數(shù)與年份的正相關性較強
②公共圖書館業(yè)機構(gòu)數(shù)平均每年增加13.743個
③可預測 2019 年公共圖書館業(yè)機構(gòu)數(shù)約為3192個
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com