已知平面上動點P(x,y)滿足約束條件
x-y+1≤0
x+y-5≤0
x≥1
,則動點P運動形成軌跡圖形的面積為
1
1
分析:畫出約束條件
x-y+1≤0
x+y-5≤0
x≥1
表示的可行域,是一個三角形,然后求出可行域的面積即可.
解答:解:因為實數(shù)x、y滿足約束條件
x-y+1≤0
x+y-5≤0
x≥1
,
所以它表示的可行域為圖中陰影部分,是一個三角形ABC,
其中A(1,4),B(1,2),C(2,2)
則其圍成的平面區(qū)域的面積為:
1
2
×2×1=1
;
故答案為:1.
點評:本題考查線性規(guī)劃,可行域不是的圖形的面積的求法,正確畫出可行域是解題的關鍵,考查計算能力、作圖能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知兩點M(0,1)N(0,-1),平面上動點P(x,y)滿足|
NM
|•|
MP
|+
MN
NP
=0

(Ⅰ)求動點P(x,y)的軌跡C的方程;
(Ⅱ)設Q(0,m),R(0,-m)(m≠0)是y軸上兩點,過Q作直線與曲線C交于A、B兩點,試證:直線RA、RB與y軸所成的銳角相等;
(Ⅲ).在Ⅱ的條件中,若m<0,直線AB的斜率為1,求△RAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點M(2,0)、N(-2,0),平面上動點P滿足由|
MN
|•|
MP
|+
MN
MP
= 0

(1)求動點P的軌跡C的方程.
(2)是否存在實數(shù)m使直線x+my-4=0(m∈R)與曲線C交于A、B兩點,且OA⊥OB?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•汕頭二模)已知平面內一動點 P到定點F(0,
1
2
)
的距離等于它到定直線y=-
1
2
的距離,又已知點 O(0,0),M(0,1).
(1)求動點 P的軌跡C的方程;
(2)當點 P(x0,y0)(x0≠0)在(1)中的軌跡C上運動時,以 M P為直徑作圓,求該圓截直線y=
1
2
所得的弦長;
(3)當點 P(x0,y0)(x0≠0)在(1)中的軌跡C上運動時,過點 P作x軸的垂線交x軸于點 A,過點 P作(1)中的軌跡C的切線l交x軸于點 B,問:是否總有 P B平分∠A PF?如果有,請給予證明;如果沒有,請舉出反例.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市順義區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知兩點M(0,1)N(0,-1),平面上動點P(x,y)滿足
(Ⅰ)求動點P(x,y)的軌跡C的方程;
(Ⅱ)設Q(0,m),R(0,-m)(m≠0)是y軸上兩點,過Q作直線與曲線C交于A、B兩點,試證:直線RA、RB與y軸所成的銳角相等;
(Ⅲ).在Ⅱ的條件中,若m<0,直線AB的斜率為1,求△RAB面積的最大值.

查看答案和解析>>

同步練習冊答案