雙曲線的焦點(diǎn)在y軸上,且它的一個(gè)焦點(diǎn)在直線5x-2y+20=0上,兩焦點(diǎn)關(guān)于原點(diǎn)對(duì)稱.
c
a
=
5
3
,則此雙曲線的方程是( 。
A、
x2
36
-
y2
64
=1
B、
x2
64
-
y2
36
=1
C、
x2
36
-
y2
64
=-1
D、
x2
64
-
y2
36
=-1
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:求出焦點(diǎn)坐標(biāo),得到C,利用離心率求出a,然后求解b,即可得到雙曲線方程.
解答: 解:由題意可知,雙曲線是焦點(diǎn)在y軸的標(biāo)準(zhǔn)方程,
雙曲線的焦點(diǎn)在y軸上,且它的一個(gè)焦點(diǎn)在直線5x-2y+20=0上,
可得x=0,y=10,即c=10,
c
a
=
5
3
,∴a=6,
b2=c2-a2=64.
所求的雙曲線方程為:
y2
36
-
x2
64
=1,
x2
64
-
y2
36
=-1.
故選:D.
點(diǎn)評(píng):本題考查雙曲線的方程的求法,判斷雙曲線的形狀是解題的關(guān)鍵,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,底面是等腰三角形,∠ACB=90°,側(cè)棱AA1=2,CA=2,D是CC1的中點(diǎn),試問(wèn)在線段A1B上是否存在一點(diǎn)E(不與端點(diǎn)重合),使得點(diǎn)A1到平面AED的距離為
2
6
3
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的一塊木料中,棱BC平行于面A′C′.
(Ⅰ)要經(jīng)過(guò)面A′C′內(nèi)的一點(diǎn)P和棱BC將木料鋸開,應(yīng)怎樣畫線?(寫出畫法步驟,并在圖中畫出)
(Ⅱ)說(shuō)明所畫的線與平面AC的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A、B為橢圓
x2
16
+
y2
9
=1上任意兩點(diǎn),O為坐標(biāo)原點(diǎn),則“OA⊥OB”是“O到直線AB的距離為
12
5
”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上頂點(diǎn)到焦點(diǎn)的距離為2,離心率為
3
2

(1)求橢圓C的方程;
(2)設(shè)P是橢圓C長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作斜率為k的直線l交橢圓C于A、B兩點(diǎn).若|PA|2+|PB|2的值與點(diǎn)P的位置無(wú)關(guān),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求過(guò)A(0,5)與直線x-2y=0和2x+y=0都相切的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(7π+α)=-2.
(1)求
cos2α-2sin2α
sin2α+3cos2α
的值;
(2)若α是第二象限角,求
sin(π-α)cos(
π
2
+α)-tan(3π+α)
sin(4π-α)sin(
2
+α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈R,且a2>b2( 。
A、若b<0,則a>b
B、若b>0,則a<b
C、若a>b,則a>0
D、若b>a,則b>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知e2-e-1=0,求e的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案