在以為原點的直角坐標(biāo)系中,點的直角頂點,若,且點的縱坐標(biāo)大于0

(1)求向量的坐標(biāo);

(2)是否存在實數(shù),使得拋物線上總有關(guān)于直線對稱的兩個點?若存在,求實數(shù)的取值范圍,若不存在,說明理由.

(1)  (2)當(dāng)時,拋物線上總有關(guān)于直線對稱的兩個點 


解析:

   (1)設(shè) 

則由,得……(4分)

           解得 或                ……(5分)

           因為

           所以,

           故              ……(7分)

(2) 設(shè)為拋物線上關(guān)于直線對稱的兩點,

則   ,  又因為

可得                   …………(10分)

為方程的兩個相異實根

于是,由,可得       

故當(dāng)時,拋物線上總有關(guān)于直線對稱的兩個點…(13分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省哈爾濱市高三第四次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,曲線為參數(shù))。在以為原點,軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,射線為,與的交點為,與除極點外的一個交點為。當(dāng)時,。

(1)求,的直角坐標(biāo)方程;

(2)設(shè)軸正半軸交點為,當(dāng)時,設(shè)直線與曲線的另一個交點為,求。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高三模擬考試數(shù)學(xué)(理科)試題 題型:解答題

本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.

(1)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

 以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸。已知點的直角坐標(biāo)為(1,-5),點的極坐標(biāo)為若直線過點,且傾斜角為,圓為圓心、為半徑。

(I)求直線的參數(shù)方程和圓的極坐標(biāo)方程;

(II)試判定直線和圓的位置關(guān)系.

(2)(本小題滿分7分)選修4-4:矩陣與變換

把曲線先進(jìn)行橫坐標(biāo)縮為原來的一半,縱坐標(biāo)保持不變的伸縮變換,再做關(guān)于軸的反射變換變?yōu)榍,求曲線的方程.

(3)(本小題滿分7分)選修4-5:不等式選講

關(guān)于的一元二次方程對任意無實根,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省模擬題 題型:解答題

在直角坐標(biāo)坐標(biāo)系中,已知一個圓心在坐標(biāo)原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段PP′,P′為垂足,
(1)求線段PP′中點M的軌跡C的方程;
(2)過點Q(-2,0)作直線l與曲線C交于A、B兩點,設(shè)N是過點(,0),且以為方向向量的直線上一動點,滿足(O為坐標(biāo)原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案