如圖,在平面四邊形ABCD中,若AC=3,BD=2,則(
AB
+
DC
)•(
AC
+
BD
)
=
 

精英家教網
分析:先利用向量的加法把
AB
+
DC
轉化為
AC
-
BD
,再代入原題整理后即可求得結論.
解答:解:因為
AB
+
DC
=(
AC
+
CB
)+(
DB
+
BC
)=
AC
+
DB
+(
CB
+
BC
)=
AC
-
BD

∴(
AB
+
DC
)•(
AC
+
BD

=(
AC
-
BD
)•(
AC
+
BD

=
AC
2
-
BD
2

=32-22=5.
故答案為5
點評:本題主要考查向量在幾何中的應用以及向量的加法運算,是對基礎知識的考查,屬于基礎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在平面四邊形ABCD中,若AB=2,CD=1,則(
AC
+
DB
)•(
AB
+
CD
)
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC,設點F為棱AD的中點.
(1)求證:DC⊥平面ABC;
(2)求直線BF與平面ACD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面四邊形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿對角線AC將此四邊形折成直二面角.
(1)求證:AB⊥平面BCD
(2)求三棱錐D-ABC的體積
(3)求點C到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面四邊形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿對角線AC將此四邊形折成直二面角.
(1)求證:AB⊥平面BCD
(2)求三棱錐D-ABC的體積
(3)求點C到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC,設點F為棱AD的中點.
(1)求證:DC⊥平面ABC;
(2)求直線BF與平面ACD所成角的余弦值.
精英家教網

查看答案和解析>>

同步練習冊答案