規(guī)格類型
鋼板類型 |
A規(guī)格
|
B規(guī)格
|
C規(guī)格
|
第一種鋼板 |
2 |
1 |
1 |
第二種鋼板 |
1 |
2 |
3 |
今需要A、B、C三種規(guī)格的成品分別為15、18、27塊,問各截這兩種鋼板多少張可得所需三種規(guī)格成品,且使所用鋼板張數(shù)最少?
解:設需截第一種鋼板x張,第二種鋼板y張,根據題意可得:
作出以上不等式組所表示的平面區(qū)域,即可行域: 目標函數(shù)為z=x+y, 作出在一組平行直線x+y=t(t為參數(shù))中經過可行域內的點且和原點距離最近的直線,此直線經過直線x+3y=37和直線2x+y=15的交點A(),直線方程為x+y=。 由于都不是整數(shù),而最優(yōu)解(x,y)中,x、y必須滿足x,y∈Z,所以,可行域內點()不是最優(yōu)解。 經過可行域內的整點(橫坐標和縱坐標都是整數(shù)的點)且與原點距離最近的直線是x+y=12,經過的整點是B(3,9)和C(4,8),它們是最優(yōu)解。 答:要截得所需規(guī)格的三種鋼板,且使所截兩種鋼板的張數(shù)最少的方法有兩種,第一種截法是截第一種鋼板3張、第二種鋼板9張;第二種截法是截第一種鋼板4張、第二種鋼板8張,兩種方法都最少要截得兩種鋼板共12張。 |
科目:高中數(shù)學 來源: 題型:
類 型 | A規(guī)格 | B規(guī)格 | C規(guī)格 |
第一種鋼板 | 1 | 2 | 1 |
第二種鋼板 | 1 | 1 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時截得三種規(guī)格的小鋼板塊數(shù)如下表:
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
規(guī)格類型 鋼板類型 |
A |
B |
C |
第一種鋼板 | 2 | 1 | 1 |
第二種鋼板 | 1 | 2 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
規(guī)格類型 | A規(guī)格 | B規(guī)格 | C規(guī)格 |
鋼板類型 | |||
第一種鋼板 | 2 | 1 | 1 |
第二種鋼板 | 1 | 2 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆馬鞍山中加雙語學校高一第二學期期中考試數(shù)學試卷 題型:解答題
要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時截得三種規(guī)格小鋼板的塊數(shù)如下表所示:
類 型 |
A規(guī)格 |
B規(guī)格 |
C規(guī)格 |
第一種鋼板 |
1 |
2 |
1 |
第二種鋼板 |
1 |
1 |
3 |
每張鋼板的面積,第一種為,第二種為,今需要A、B、C三種規(guī)格的成品各12、15、27塊,問各截這兩種鋼板多少張,可得所需三種規(guī)格成品,且使所用鋼板面積最?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com