若函數(shù)y=f(x)在區(qū)間[a,b]上是連續(xù)的、單調(diào)的函數(shù),且滿足f(a)•f(b)<0,則函數(shù)y=f(x)在區(qū)間[a,b]上有唯一的零點(diǎn)”.對(duì)于函數(shù)f(x)=-x3+x2+x+m,
(1)當(dāng)m=0時(shí),討論函數(shù)f(x)=-x3+x2+x+m在定義域內(nèi)的單調(diào)性并求出極值;
(2)若函數(shù)f(x)=-x3+x2+x+m有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
分析:(1)直接求函數(shù)f(x)=-x3+x2+x的導(dǎo)函數(shù),判斷單調(diào)性求函數(shù)極值即可;
(2)三次函數(shù)有三個(gè)零點(diǎn),也就是函數(shù)圖象與x軸有三個(gè)交點(diǎn),函數(shù)的極小值小于0,極大值大于0,即求函數(shù)的極值即可解決.
解答:解:(1)當(dāng)m=0時(shí),f(x)=-x3+x2+x.
∴f′(x)=-3x2+2x+1=-3(x+
1
3
)(x-1)

列表如下:
精英家教網(wǎng)
由表可知:函數(shù)f(x)=-x3+x2+x在區(qū)間[-
1
3
,1]上單調(diào)遞增,在(-∞,-
1
3
)
和(1,+∞)上單調(diào)遞減.
∴f(x)的極小值為f(-
1
3
)
=-
5
27

極大值為?(1)=1.
(2)由(1)知,當(dāng)x=-
1
3
時(shí),
f(x)取得極小值f(-
1
3
)= 
1
27
+
1
9
-
1
3
+m=m-
5
27
,
當(dāng)x=1時(shí),f(x)取得極大值
f(1)=-1+1+1+m=m+1,
當(dāng)
m-
5
27
<0
m+1>0
,即-1<m<
5
27
時(shí),
f(-1)=1+1-1+m=m+1>0,
f(-
1
3
)
=m-
5
27
<0,
f(1)=m+1>0,f(2)=m-2<0,
∴f(x)=-x3+x2+m在[-1,-
1
3
]
上有唯一零點(diǎn).
(-
1
3
,1]
上有唯一零點(diǎn),在(1,2]上有唯一零點(diǎn).又f(x)=-x3+x2+x+m在(-∞,-1]上單調(diào)遞減,
在[2,+∞]上單調(diào)遞減,∴在(-∞,-1]上恒有?f(x)≥f(-1)>0,在[2,+∞)上恒有f(x)≤f(2)<0.
∴f(x)=-x3+x2+x+m-在(-∞,-1]和[2,+∞)上無(wú)零點(diǎn).∴-1<m<
5
27
時(shí),函數(shù)f(x)=-x3+x2+x+m在有三個(gè)零點(diǎn),
∴所求實(shí)數(shù)m的取值范圍是(-1,
5
27
)
點(diǎn)評(píng):本題考查函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)零點(diǎn)的概念,以及函數(shù)的導(dǎo)數(shù)求函數(shù)的極值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量t,y滿足關(guān)系式loga
t
a3
=logt
y
a3
,a>0且a≠1,t>0且t≠1,變量t,x滿足關(guān)系式t=ax,變量y,x滿足函數(shù)關(guān)系式y(tǒng)=f(x).
(1)求函數(shù)y=f(x)表達(dá)式;
(2)若函數(shù)y=f(x)在[2a,3a]上具有單調(diào)性,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
38
x2-2x+2+ln x.
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)在[em,+∞)(m∈Z)上有零點(diǎn),求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2+2ax-3a.
(Ⅰ)若函數(shù)y=f(x)在(-∞,1)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)函數(shù)f(x)在[1,2]上的最大值為4時(shí),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(2x)=x2-2ax+3
(1)求函數(shù)y=f(x)的解析式
(2)若函數(shù)y=f(x)在[
12
,8]上的最小值為-1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)在(0,+∞)上的導(dǎo)函數(shù)為f′(x),且不等式xf′(x)>f(x)恒成立,又常數(shù)a,b滿足a>b>0,則下列不等式一定成立的是
 

①bf(a)>af(b);②af(a)>bf(b);③bf(a)<af(b);④af(a)<bf(b).

查看答案和解析>>

同步練習(xí)冊(cè)答案