已知數(shù)列、滿足,且,其中為數(shù)列的前項和,又,對任意都成立。
(1)求數(shù)列、的通項公式;
(2)求數(shù)列的前項和
(1),;(2).
解析試題分析:本題考查等差數(shù)列與等比數(shù)列的概念、通項公式、前n項和公式、數(shù)列求和等基礎(chǔ)知識,考查運算能力和推理論證能力.第一問,將已知條件中的用代替得到新的式子,兩式子作差,得出為等差數(shù)列,注意需檢驗的情況,將求出代入到已知的第2個式子中,用代替式子中的,兩式子作差得到表達(dá)式;第二問,將代入到中,用錯位相減法求和.
試題解析:(1)∵,∴
兩式作差得:
∴當(dāng)時,數(shù)列是等差數(shù)列,首項為3,公差為2,
∴,又符合
即 4分
∵,
∴
兩式相減得:,∴
∵不滿足,∴ 6分
(2)設(shè)
兩式作差得:
所以, ..12分
考點:1.等差數(shù)列的通項公式;2.等比數(shù)列的前n項和;3.錯位相減法求和.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列是公比為正數(shù)的等比數(shù)列,,.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足:,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項和為,且,數(shù)列滿足,且.
(Ⅰ)求數(shù)列、的通項公式;
(Ⅱ)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項和記為,,.
(1)求數(shù)列的通項公式;
(2)等差數(shù)列的前項和有最大值,且,又、、成等比數(shù)列,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前n項和記為Sn,a1=t,點(Sn,an+1)在直線y=2x+1上,n∈N*.
(1)當(dāng)實數(shù)為何值時,數(shù)列是等比數(shù)列?
(2)在(1)的結(jié)論下,設(shè)是數(shù)列的前項和,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com