【題目】數(shù)列中,若對(duì)任意都有為常數(shù))成立,則稱(chēng)為“等差比數(shù)列”,下面對(duì)“等差比數(shù)列” 的判斷:①不可能為;②等差數(shù)列一定是等差比數(shù)列; ③等比數(shù)列一定是等差比數(shù)列 ;④通項(xiàng)公式為(其中,且)的數(shù)列一定是等差比數(shù)列,其中正確的判斷是( )

A. ①③④ B. ②③④ C. ①④ D. ①③

【答案】C

【解析】分析:當(dāng)時(shí),則數(shù)列成了常數(shù)列,則分母也為0,進(jìn)而推斷出,得出①是正確的,當(dāng)?shù)炔顢?shù)列和等比數(shù)列為常數(shù)列時(shí)不滿足題設(shè)條件,排除②③,把④的通項(xiàng)公式代入題設(shè)中,滿足條件,進(jìn)而推斷④是正確的.

詳解:對(duì)于①中,若時(shí),則分母也為0,所以,得出①是正確;

當(dāng)當(dāng)?shù)炔顢?shù)列和等比數(shù)列為常數(shù)列時(shí)不滿足題設(shè)條件,排除②③,

對(duì)于④中,把代入結(jié)果為(常數(shù)),所以是正確的,

綜上所述,正確的命題為①④,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}為公差不為0的等差數(shù)列,滿足a1=5,且a2 , a9 , a30成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 =an(n∈N*),且b1= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】魅力紅谷灘才藝展示評(píng)比中,參賽選手成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的損壞,可見(jiàn)部分如圖所示.

1)根據(jù)圖中信息,將圖乙中的頻率分布直方圖補(bǔ)充完整;

2)根據(jù)頻率分布直方圖估計(jì)選手成績(jī)的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);

(3)從成績(jī)?cè)?/span>[80,100]的選手中任選2人進(jìn)行PK,求至少有1 人成績(jī)?cè)?/span>[90,100]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,圖中圓弧所在圓的圓心為點(diǎn)C,半徑為 ,且點(diǎn)P在圖中陰影部分(包括邊界)運(yùn)動(dòng).若 =x +y ,其中x,y∈R,則4x﹣y的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) 表示三條不同的直線, 表示三個(gè)不同的平面,給出下列三個(gè)命題:①若 ,則 ;②若 , 內(nèi)的射影, ,則 ;③若 . 其中真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn) 到點(diǎn) 的距離比它到直線 的距離小 ,記動(dòng)點(diǎn) 的軌跡為 .若以 為圓心, 為半徑( )作圓,分別交 軸于 兩點(diǎn),連結(jié)并延長(zhǎng) ,分別交曲線 兩點(diǎn).
(1)求曲線 的方程;
(2)求證:直線 的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 為圓 上的動(dòng)點(diǎn), 的坐標(biāo)為 , 在線段 上,滿足 .
(Ⅰ)求 的軌跡 的方程.
(Ⅱ)過(guò)點(diǎn) 的直線 交于 兩點(diǎn),且 ,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種商品在30天內(nèi)每克的銷(xiāo)售價(jià)格(元)與時(shí)間的函數(shù)圖像是如圖所示的兩條線段,(不包含,兩點(diǎn));該商品在 30 天內(nèi)日銷(xiāo)售量(克)與時(shí)間(天)之間的函數(shù)關(guān)系如下表所示.

5

1

5

2

0

3

0

銷(xiāo)售量

3

5

2

5

2

0

1

0

(1)根據(jù)提供的圖象,寫(xiě)出該商品每克銷(xiāo)售的價(jià)格(元)與時(shí)間的函數(shù)關(guān)系式;

(2)根據(jù)表中數(shù)據(jù)寫(xiě)出一個(gè)反映日銷(xiāo)售量隨時(shí)間變化的函數(shù)關(guān)系式;

(3)在(2)的基礎(chǔ)上求該商品的日銷(xiāo)售金額的最大值,并求出對(duì)應(yīng)的.

(注:日銷(xiāo)售金額=每克的銷(xiāo)售價(jià)格×日銷(xiāo)售量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的不等式.

(1)已知不等式的解集為,求的值;

(2)解關(guān)于的不等式.

查看答案和解析>>

同步練習(xí)冊(cè)答案