18.隨著智能手機的發(fā)展,微信越來越成為人們交流的一種方式,某機構對使用微信交流的態(tài)度進行調查,隨機調查了50人,他們年齡的頻數(shù)分布及對使用微信交流贊成人數(shù)如下表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)51012721
(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,關判斷是否有99%的把握認為年齡45歲為分界點對使用微信交流的態(tài)度有差異;
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計
贊成102737
不贊成10313
合計203050
(Ⅱ)若對年齡在[55,65)的被調查人中隨機抽取兩人進行追蹤調查,求至少有1人贊成使用微信交流的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.0500.0100.001
k03.8416.63510.828

分析 (Ⅰ)根據(jù)2×2列聯(lián)表,計算K2,得出把握程度;
(Ⅱ)列出所有基本事件的情況,根據(jù)間接法求出至少有1人贊成的概率.

解答 解:(Ⅰ)2×2列聯(lián)表

年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計
贊成102737
不贊成10313
合計203050
∴K2=$\frac{50(10×3-10×27)^{2}}{20×30×37×13}$≈9.98>6.635,
∴有99%的把握認為年齡45歲為分界點對使用微信交流的態(tài)度有差異.---------(6分)
(Ⅱ)[55,65)中不贊成使用微信交流的人為A,B,C,贊成使用微信交流的人為a,b,
則從5人抽取兩人有:
AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10個結果,
其中兩人都不贊成用微信交流的有3個結果,
∴至少有1人贊成使用微信交流的概率P=1-0.3=0.7--------(12分)

點評 考查了獨立性檢驗的概念和應用,至少問題間接法的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=2sinxcosx+sin(2x+$\frac{π}{2}$).
(1)若x∈R,求f(x)的最小正周期和單調遞增區(qū)間;
(2)當x∈[0,$\frac{π}{3}$]求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知圓心在x軸正半軸上的圓C與直線5x+12y+21=0相切,與y軸交于M,N兩點,且∠MCN=120°.
(1)求圓C的標準方程;
(2)過點P(0,2)的直線l與圓C交于不同的兩點A,B,若設點G為△OAB的重心,當△MNG的面積為$\sqrt{3}$時,求直線l的方程.
備注:△ABC的重心G的坐標為$(\frac{{{x_A}+{x_B}+{x_C}}}{3},\frac{{{y_A}+{y_B}+{y_C}}}{3})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知M為拋物線y2=4x上的一點,點M到直線4x-3y+8=0的距離為d1;點M到y(tǒng)軸距離為d2.則d1+d2的最小值為$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知在直角坐標系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-3t}\\{y=m+\sqrt{3}t}\end{array}\right.$(t是參數(shù),m是常數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C極坐標方程為ρ=asin(θ+$\frac{π}{3}$),點M的極坐標為(4,$\frac{π}{6}$),且點M在曲線C上.
(I)求a的值及曲線C直角坐標方程;
(II )若點M關于直線l的對稱點N在曲線C上,求|MN|的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ=4cosθ.
(1)把曲線C的極坐標方程化為直角坐標方程;
(2)設直線l與曲線C交于M,N兩點,點A(1,0),求$\frac{1}{|MA|}$+$\frac{1}{|NA|}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.觀察下列等式

據(jù)此規(guī)律,第n個等式可為1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n}$=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.觀察下列各式:72=49,73=343,74=2401,…,則72016的末兩位數(shù)字為( 。
A.01B.43C.07D.49

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知f(x)=|x|.
(I)解關于x的不等式f(x)+f(x-2)≥3;
(Ⅱ)設g(x)=f(x+$\frac{1}{x}$)+f(x-$\frac{1}{x}$),證明:g(x)≥2.

查看答案和解析>>

同步練習冊答案