18.已知集合A={x|-2<x<2},B={x|(x+1)(x-3)≤0},則A∩(∁RB)=(  )
A.(-1,2)B.(-2,-1]C.(-2,-1)D.(2,3)

分析 求出B中不等式的解集,確定B,根據(jù)全集R求出B的補(bǔ)集,找出A與B補(bǔ)集的交集即可.

解答 解:集合A={x|-2<x<2}=(-2,2),B={x|(x+1)(x-3)≤0}=[-1,3],
∴∁RB=(-∞,-1)∪(3,+∞),
∴A∩(∁RB)=(-2,-1),
故選:C.

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線$\frac{x^2}{9}-\frac{y^2}{27}=1$與點(diǎn)M(5,3),F(xiàn)為右焦點(diǎn),若雙曲線上有一點(diǎn)P,則$PM+\frac{1}{2}PF$的最小值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)M、N、K分別為正方體ABCD-A1B1C1D1的棱AB、B1C1、DD1的中點(diǎn),在正方體的所有面對(duì)角線和體對(duì)角線所在的直線中,與平面MNK平行的條數(shù)為( 。
A.6條B.7條C.8條D.9條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過點(diǎn)(1,$\frac{3}{2}$),左、右焦點(diǎn)為F1、F2,右頂點(diǎn)為A,上頂點(diǎn)為B,且|AB|=$\frac{\sqrt{7}}{2}$|F1F2|.
(1)求橢圓E的方程;
(2)過點(diǎn)M(-4,0)作斜率為k(k≠0)的直線l,交橢圓E于P、Q兩點(diǎn),N為PQ中點(diǎn),問是否存在實(shí)數(shù)k,使得以F1F2為直徑的圓經(jīng)過N點(diǎn),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的四個(gè)頂點(diǎn)組成的四邊形的面積為$2\sqrt{2}$,且經(jīng)過點(diǎn)(1,$\frac{{\sqrt{2}}}{2}}$).
(1)求橢圓C的方程;
(2)若橢圓C的下頂點(diǎn)為P,如圖所示,點(diǎn)M為直線x=2上的一個(gè)動(dòng)點(diǎn),過橢圓C的右焦點(diǎn)F的直線l垂直于OM,且與C交于A,B兩點(diǎn),與OM交于點(diǎn)N,四邊形AMBO和△ONP的面積分別為S1,S2.求S1S2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義在R上的函數(shù)f(x),滿足f(x+1)=f(x-1),且f(x+2)=f(2-x),且f(x)在[-3,-2]上是減函數(shù),如果A,B是銳角三角形的兩個(gè)內(nèi)角,則( 。
A.f(sinA)>f(cosB)B.f(cosB)>f(sinA)C.f(sinA)>f(sinB)D.f(cosB)>f(cosA)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)Sn為各項(xiàng)不相等的等差數(shù)列{an}的前n項(xiàng)和,已知a3a5=3a7,S3=9.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列{${\frac{1}{{{a_n}{a_{n+1}}}}}$}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知數(shù)列{an}滿足:a1=2,an+1=(${\sqrt{{a_n}-1}$+1)2+1,則a12=( 。
A.101B.122C.145D.170

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.大衍數(shù)列,來源于中國古代著作《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論.其前10項(xiàng)為:0、2、4、8、12、18、24、32、40、50.
通項(xiàng)公式:an=$\left\{\begin{array}{l}{\frac{{n}^{2}-1}{2},n為奇數(shù)}\\{\frac{{n}^{2}}{2},n為偶數(shù)}\end{array}\right.$       
如果把這個(gè)數(shù)列{an}排成右側(cè)形狀,并記A(m,n)表示第m行中從左向右第n個(gè)數(shù),則A(10,4)的值為3612.

查看答案和解析>>

同步練習(xí)冊(cè)答案