精英家教網 > 高中數學 > 題目詳情
各項都為正數的等比數列{an}中,a1=1,,則通項公式an=   
【答案】分析:把已知的等式右邊通分后,根據等比數列的各項都為正,得到a2+a3≠0,等式兩邊都除以a2+a3,在利用等比數列的通項公式化簡,將a1的值代入即可求出公比q的值,根據a1和q的值寫出等比數列的通項公式即可.
解答:解:=,
因為等比數列{an}的各項都為正,所以a2+a3≠0,
則a2a3=27,即(a1q)•(a1q2)=a12q3=q3=27,解得q=3,
所以通項公式an=a1qn-1=3n-1
故答案為:3n-1
點評:此題考查學生靈活運用等比數列的通項公式化簡求值,掌握等比數列的性質,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

各項都為正數的等比數列{an}中,a1=1,a2+a3=27(
1
a2
+
1
a3
)
,則通項公式an=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設{an}是等差數列,{bn}是各項都為正數的等比數列,且a1=b1=1,a2+b3=a3+b2=7.
(1)求{an},{bn}的通項公式;
(2)記cn=an-2010,n∈N*,An為數列{cn}的前n項和,當n為多少時An取得最大值或最小值?
(3)(理)是否存在正數K,使得(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥K
2n+1
對一切n∈N*均成立,若存在,求出K的最大值,若不存在,說明理由.
(4)(文)求數列{
an
bn
}
的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知:數列{an}是等差數列,數列{bn}是各項都為正數的等比數列,且a1=b1=1,a3+b5=21,a5+b3=13,數列{an}、{bn}的前n項和分別為Sn、Tn
(1)求:數列{an},{bn}的通項公式;
(2)求:
S10T10
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}是等差數列,數列{bn}是各項都為正數的等比數列,且a1=b1=1,b1+b2=a2,b3是a1與a4的等差中項.
(I)求數列{an},{bn}的通項公式;
(II)求數列{
anbn
}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

設{an}是等差數列,{bn}是各項都為正數的等比數列,且a1=b1=1,a3+b5=21,a5+b3=13
(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)求這兩個數列的對應各項相乘所得新數列的前n項和Sn

查看答案和解析>>

同步練習冊答案